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Abstract

In this paper, we prove Slodkowski version of the infinite-dimensional spectral mapping
theorem and Cartan–Slodkowski version of the finite-dimensional spectral mapping theorem for
nilpotent operator Lie subalgebras with respect to the various noncommutative functional calculi.
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1. Introduction

By spectral mapping theorem we mean inclusions like f (� (a)) ⊆ � (f (a)) (forward)
or f (� (a)) ⊇ � (f (a)) (backward), where a = (a1, . . . , an) is a n-tuple of bounded
linear operators on a complex Banach space, � is a joint spectrum (� (a) is a subset in
Cn), and f = (f1, . . . , fm) is a m-tuple of (noncommutative) functions in n-variables,
which by reasonable way acts on the operator family a (in this case f (a) is a m-tuple
of operators on the same Banach space) and on � (a) simultaneously. If the equality

f (� (a)) = � (f (a)) (1.1)
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holds for a certain class of operators a and functions f then we say that � possesses
the full (forward and backward) spectral mapping property on that class. It is well
known [12, Section 2.6] that the Taylor spectrum �t and Slodkowski spectra ��,k , ��,k ,
k ∈ Z+, possess such property on the class of mutually commuting operators a and
holomorphic functions f defined on an open neighborhood of the Taylor spectrum �t (a).
The conventional proof scheme of the equality like (1.1) for some class of operators
a and functions f can be divided into the following steps. The first step is to establish
the Projection Property

�n−1 (� (a)) = �
(
a′
)
,

where a′ = (a1, . . . , an−1) and �n−1 : Cn→ Cn−1 is the projection map onto the first
n−1 coordinates. The second step is the inclusion � (a, f (a)) ⊆ {(�, f (�)) : � ∈ Cn

}
,

which using the Projection Property automatically involves the equality

� (a, f (a)) = {(�, f (�)) : � ∈ � (a)} .

Finally, using these facts we prove the equality (1.1) itself by the following way

� (f (a)) = �m (� (a, f (a))) = {f (�) : � ∈ � (a)} = f (� (a)) ,

where �m : Cn+m → Cm is the projection map onto the last m coordinates. The
key moment in this framework is the Projection Property that we have applied to the
operator family (a, f (a)). No doubt on such possibility if a is a commutative family
and f is a family of holomorphic functions, in this case (a, f (a)) is just another
(n+m)-tuple of commutative operator family. But this idea cannot be used directly
for noncommutative operator families and functions in noncommuting variables. For
instance, that fails to be true on the class of operators generating a finite-dimensional
nilpotent Lie subalgebra and polynomials generating a finite-dimensional Lie subalgebra
in the universal enveloping algebra. Indeed, take an operator family

a = (a1, a2, a3) , [a1, a2] = a3, [ai, a3] = 0, i = 1, 2,

generating a Heisenberg algebra, where [x, y] = xy − yx is the Lie multiplication. If
f (a) = a1a2 is a polynomial then (a, f (a)) generates an infinite-dimensional Lie
subalgebra (see [6, Example 7.7]).

Nonetheless, in this case the full spectral mapping property is valid for the Tay-
lor spectrum [13] and for Slodkowski spectra [4]. We say in this case that a finite-
dimensional spectral mapping theorem with respect to polynomials is valid on the
class of nilpotent operator Lie subalgebras. Thus in a noncommutative case a (finite)
family of functions (even polynomials) f may generate an infinite-dimensional Lie sub-
algebra despite finite-dimensionality of the nilpotent Lie subalgebra g generated by
a. This phenomena is crucial to distinguish noncommutative case from commutative
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one, thereby we are in need of a new method to investigate noncommutative spectral
mapping theorems. Some ideas for the particular cases were suggested in [13,9,6]. The
finite-dimensional spectral (the Slodkowski version) mapping theorem with respect to
the noncommutative holomorphic functional calculus on absolutely convex domains was
proved in [9] on the class of nilpotent operator Lie subalgebras. The Taylor version
of the full spectral mapping property suggested in [13] was extended to a family of
noncommutative rational functions f generating an infinite-dimensional quasinilpotent
Banach–Lie (shortly, B–L) subalgebra [6]. It is an infinite-dimensional generalization
of the noncommutative spectral mapping theorem that we refer as infinite-dimensional
spectral mapping theorem. Moreover, the approach suggested in [6] allows to establish
some inclusions for the Slodkowski spectra, too. Nevertheless, the full spectral mapping
property remained open. Undoubtedly, the proofs of these spectral mapping theorems
for each particular case have some common and distinct features. It is reasonable to ask
how to prove the spectral mapping theorem with respect to a general noncommutative
functional calculi? Our question is also motivated by the latest achievements on the
noncommutative functional calculus for the class of nilpotent operator Lie subalgebras
(see [8,10,19]).

In this paper, we apply a general framework of spectral mapping properties pro-
posed in [11] to prove the Slodkowski version of the infinite-dimensional spectral
mapping theorem from [6] for more general noncommutative functions than rational
ones, so called splitting over Banach g-module elements (see Section 4.2). Roughly
speaking, splitting over Banach g-module elements of a dominating (function) algebra
are those functions in noncommuting variables having trivial actions on cohomologies
of the Koszul complex of the Banach g-module. It is a new phenomena (previously
did not observe in papers [9,6]) which allows to extend spectral mapping properties
to noncommutative functions f which are not rational ones. For example, all holo-
morphic functions defined on an open neighborhood of the Taylor spectrum �t (a) of
a mutually commuting operator family a are splitting elements. The latter presented
in Taylor’s investigations implicitly (see [23, Corollary 4.7, 12, Proposition 2.5.9]).
Further, one proves (see Section 6) that many algebras of noncommutative functions
previously considered in [9,6] consists of splitting elements. We also generalize the
finite-dimensional spectral mapping theorem provided the operator family f (a) gener-
ates a finite-dimensional solvable Lie subalgebra and f consists of splitting elements.
Herein the key moment plays the Cartan–Slodkowski spectra of operator solvable Lie
subalgebras to surpass the obstacle caused by the problem when we do not know
whether or not a finite-dimensional Lie subalgebra of the (closed) associative envelope
of g is automatically nilpotent one, meanwhile it is known (see below Lemmas 3, 16)
that it is always a solvable Lie subalgebra.

It is worth to note that our approach generalizes the (classical) scheme mentioned
above replacing � (a, f (a)) with the spectrum of a certain parametrized Banach space
bicomplex connecting a and f (a). We also suggest a modification of the method
proposed in [6], which is motivated by the spectral mapping framework [11]. Such
modification allows us to overcome the obstacle for the Slodkowski version of the full
infinite-dimensional spectral mapping property investigated in [6]. For convenience, we
repeat necessary definitions and arguments from [9,6] in Section 3.
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Finally, we apply the suggested scheme to various noncommutative functional calculi
and obtain relevant spectral mapping theorems in Section 6. In particular, one follows
the main results on spectral mapping from [13,9,6].

2. Preliminaries

All linear spaces considered are complex. The linearly ordered set Z of integers
adjoined with the greatest (resp., least) element {∞} (resp., {−∞}) is denoted by Z

(resp., Z), N is the set of all positive integers and Z+ = {0} ∪ N. Let B (X, Y ) be
a (semi)normed space of all bounded linear operators between (semi)normed spaces
X and Y furnished with the operator (semi)norm and let B (X) = B (X, X). If A is
a normed associative algebra then the spectrum (resp., spectral radius) in A of an
element a ∈ A is denoted by spA (a) (resp., � (a)). For A = B (X) and T ∈ B (X),
we write sp (T ) instead of spA (T ). If T ∈ B (X, Y ) then T ∗ ∈ B (Y ∗, X∗) denotes the
dual operator between (norm) dual spaces Y ∗ and X∗. The unit ball of a (semi)normed
space X is denoted by X(1). Let BS be the category of all Banach spaces and bounded
morphisms. Its subcategory comprising all left Banach modules over a Banach algebra
A is denoted by A-mod . We use the conventional denotation X⊗̂Y for the projective
tensor product of X, Y ∈ BS and we write X⊗̂n instead of n-fold projective tensor
product of X on itself. The direct sum X ⊕ Y is endowed with the sum-norm. One
defines the functors B (Y, ?), B (?, Y ) and ?⊗̂Y on BS with values in itself. Let S be
an infinite set and let U be a nontrivial (that is,

⋂
M∈UM = ∅) ultrafilter in S. The

ultrafilter U is said to be countably incomplete [16] if there exists a countable partition
{Sn : n ∈ N} of S such that Sn /∈ U, n ∈ N. In the sequel, by an ultrafilter we mean a
nontrivial countably incomplete ultrafilter. The ultrapower of a Banach space X (resp.,
Banach space operator T) with respect to an ultrafilter U is denoted by XU (resp., TU).
Note that the space X is embedded into XU as a closed subspace and TU extends T
preserving its norm, that is, ‖TU‖ = ‖T ‖. The assignment X 
→ XU, T 
→ TU defines
a functor ?U : BS→ BS.

Now let A be a Banach algebra, S ⊆ A, ‖S‖ = sup {‖a‖ : a ∈ S} and let Sn be a
subset in A of all n-times products a1 · · · an, ai ∈ S. If S is bounded then the number
� (S) = limn ‖Sn‖1/n is called the joint spectral radius of S [21]. Note that the limit

exists and it equals to inf
{
‖Sn‖1/n : n ∈ N

}
. In particular, � (a) = � ({a}) for each

a ∈ A.
The Banach algebra of all continuous complex functions on a compact space K

furnished with the sup-norm is denoted by C (K).

2.1. Banach space (bi)complexes

A chain Banach space complex is defined as a pair (X, d), where X = {Xn : n ∈ Z}
are objects and d = {dn : n ∈ Z} are morphisms of BS, such that dn−1dn = 0 for all
n. We also write (X, d) as a sequence:

· · · ←− Xn−1
dn−1←−Xn

dn←−Xn+1 ←− · · · .
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A cochain Banach space complex is defined as a sequence · · · → Xn−1 dn−1→ Xn dn→Xn+1

→ · · · of objects and morphisms of BS such that dndn−1 = 0 for all n. The cat-
egory of all (co)chain complexes in BS is denoted by BS (resp., BS). In partic-
ular, A-mod (resp., A-mod) denotes a subcategory in BS (resp., BS) of all chain
(resp., cochain) left Banach A-module complexes. The quotient (seminormed) spaces
Hn (X, d) = ker (dn−1) / im (dn) (resp., Hn (X, d) = ker (dn) / im

(
dn−1

)
), n ∈ Z, are

called groups of (co)homologies of the complex (X, d). The complex (X, d) is said
to be exact if all (co)homologies are trivial. If Xn = {0} (resp., Xn = {0}) for all
n, n < 0, then we say that (X, d) is a nonnegative complex. Note that each chain

complex (X, d) makes into a cochain one
(
X, d

)
by setting X

n = X−n and d
n = d−n,

n ∈ Z. Similarly, a cochain complex (X, d) makes into a chain one
(
X, d

)
. That defines

a functor BS −→ BS (resp., BS→ BS) called the conjugate functor. Let (X, d) ∈ BS
and let

(
X∗, d∗

)
be its dual complex:

· · · −→ X∗n−1

d∗n−1−→X∗n
d∗n−→X∗n+1 −→ · · · .

By its very definition,
(
X∗, d∗

) = B ((X, d) , C) ∈ BS. A well known [18, item 7.6.13]
the Sequence Prime Principle asserts that (X, d) is exact iff so is its dual complex(
X∗, d∗

)
.

The following simple assertion will be used later.

Lemma 1. Let (X, d) be an exact cochain complex of seminormed spaces and let
� = {�n : n ∈ Z} be a morphism of complexes acting from (X, d) into itself. If the
operators �n−1 ∈ B (Xn−1

)
and �n+1 ∈ B (Xn+1

)
are nilpotent for some n, then so is

the operator �n ∈ B (Xn).

Proof. Assume that (�n−1)
s = 0 and (�n+1)

t = 0. Take x ∈ Xn. Then dn (�n)
t x =

(�n+1)
t dnx = 0. But Hn (X, d) = {0}, therefore (�n)

t x = dn−1y for some y ∈ Xn−1. It
follows that (�n)

s+t x = (�n)
s dn−1y = dn−1 (�n−1)

s x = 0, that is, (�n)
s+t = 0. �

Let X ∈ BS and let ∧nX be its nth exterior power (see [6]). We set Cn (X, Y ) =
B (∧nX, Y ), Y ∈ BS. The latter is a Banach space of all continuous skew-symmetric
n-linear forms on X with values in Y. Let Y ∈ BS and (X, d) ∈ BS. The functor
B (Y, ?) : BS→ BS transforms the complex (X, d) into a new complex B (Y, (X, d)):

· · · ← B (Y, Xn−1)
�n−1←−B (Y, Xn)

�n←−B (Y, Xn+1)← · · · ,

where �n (T ) = dn · T , T ∈ B (Y, Xn). A Banach space cochain complex B ((X, d) , Y )

is analogously defined. A Banach space Y is said to be projective (resp., injective) if
the complex B (Y, (X, d)) (resp., B ((X, d) , Y )) is exact for each exact Banach space
complex (X, d). A Banach space Y is said to be flat if its dual space Y ∗ is injective.
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The class of all projective (resp., flat) Banach spaces is denoted by Proj (resp., Flat).
The following assertion was proved in [11].

Lemma 2. Let Y ∈ BS, n ∈ N. Then ∧nY ∈ Proj (resp., ∧nY ∈ Flat) whenever
Y ∈ Proj (resp., Y ∈ Flat).

A Banach space bicomplex is a triple (X, d′ , d′′) with X = {Xn,m : n, m ∈ Z} being
underline Banach spaces, d′ = {dn,m

′ ∈ B (Xn,m, Xn,m+1
)}

the column differentials, and
the row differentials d′′ = {dn,m

′′ ∈ B (Xn,m, Xn+1,m
)}

, such that the following diagram
↑

· · · −→ Xn+1,m −→ · · ·
↑ d

n,m′ ↑

· · · −→ Xn,m

d
n,m′′
−→ Xn,m+1 −→ · · ·

↑ ↑
...

...

is commutative, and all columns
(
X•,m, d

•,m
′
)

and all rows
(
Xn,•, dn,•

′′
)

are Banach

space complexes, where X•,m = {Xk,m
}
, Xn,• = {Xn,k

}
and d•,m′ =

{
d

k,m
′
}

, dn,•
′′ ={

d
n,k
′′
}

. By analogy, it is defined other versions of bicomplexes. For us, of interest will

be the “double-cochain” (proposed above) and also “double-chain” versions of a bi-
complex, and we briefly say chain (resp., cochain) bicomplex instead of “double-chain”

(resp., “double-cochain”). One can easily check that d
n,m
′
(

ker
(
d

n,m
′′
))
⊆ ker

(
d

n+1,m
′′

)
and d

n,m
′
(

im
(
d

n,m−1
′′

))
⊆ im

(
d

n+1,m−1
′′

)
, therefore the quotient operator

D
n,m
′ : Hm

(
Xn,•, dn,•

′′
)
→ Hm

(
Xn+1,•, dn+1,•

′′
)

, D
n,m
′
(
x∼
) = d

n,m
′ (x)∼ ,

is well defined. Moreover, the sequence

· · · −→ Hm
(
Xn,•, dn,•

′′
)D

n,m′−→Hm
(
Xn+1,•, dn+1,•

′′
)
−→ · · ·

is a complex called mth vertical cohomology complex of the bicomplex. By analogy,
one defines nth horizontal cohomology complex

· · · −→ Hn
(
X•,m, d

•,m
′
)D

n,m′′−→Hn
(
X•,m+1, d

•,m+1
′

)
−→ · · ·

of the bicomplex. We say that a bicomplex (X, d′ , d′′) is bounded below if one can
find N ∈ Z such that Xn,m = {0} whenever n < N or m < N . The space XN,N is
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called the initial space of the bicomplex. If N = 0 then we say that (X, d′ , d′′) is a
nonnegative bicomplex with the initial space X0,0.

Let (X, d′ , d′′) be a bounded below Banach space bicomplex, Xn =⊕k+s=n Xk,s ∈
BS a sum of (bounded) diagonals of the bicomplex. One defines a Banach space com-

plex · · · −→ Xn �n

−→Xn+1 −→ · · ·, where �n (x) = d
k,s
′′ (x) + (−1)s d

k,s
′ (x) whenever

x ∈ Xk,s , k + s = n, n ∈ Z. The latter is called the total complex of (X, d′ , d′′) and it
is denoted by Tot (X, d′ , d′′).

2.2. Slodkowski spectra

Let � be a topological space and let X = {Xn : n ∈ Z} be a family of Banach
spaces. Assume that there exists a family of continuous maps d = {dn : n ∈ Z}, dn :
� → B (Xn+1, Xn), such that (X, d (�)) is a chain Banach space complex · · · ←−
Xn−1

dn−1(�)←− Xn

dn(�)←− Xn+1 ←− · · ·, for each � ∈ �, where d (�) = {dn (�)}. The collec-
tion of Banach space complexes (X, d (�)) , � ∈ �, is called (see [11]) a parametrized
chain Banach space complex or chain �-Banach complex and it is denoted by (X, d).
If (X, d (�)) is a cochain complex for each � ∈ �, then (X, d) is said to be a cochain �-
Banach complex. By reasonable way it is defined a morphism of �-Banach complexes.
Using the functors B (Y, ?), B (?, Y ), ?⊗̂Y , and ?U, one may associate new �-Banach
complexes from the original �-Banach complex (X, d). In particular, B ((X, d) , C) =(
X∗, d∗

) = {(X∗, d (�)∗
) : � ∈ �

}
is the dual parametrized complex.

A parametrized (co)chain Banach space bicomplex is defined as a certain bicom-

plex
(
X, d

′
, d
′′)

such that all its rows
(
Xn,•, d

′′
n,•
)

are �-Banach complexes, columns(
X•,m, d

′
•,m
)

are �-Banach complexes, and
(
X, d

′
(�) , d

′′
(�)
)

is a Banach space bi-

complex for all � ∈ � and � ∈ �. In this case we say that
(
X, d

′
, d
′′)

is a �×�-Banach

bicomplex.
Now let (X, d) be a (co)chain parametrized Banach space complex,

�n (X, d) = {� ∈ � : Hn (X, d (�)) �= {0}} ,

and �n (X, d) = {� ∈ � : Hn (X, d (�)) �= {0}} if (X, d) is a cochain complex, n ∈ Z.
Further, let

��,n (X, d) =
⋃
k �n

�k (X, d)

and let ��,n (X, d) be the set of those � ∈ � such that � ∈⋃k �n �k (X, d) or the image
of the operator dn−1 (�) is not closed. By analogy, we set

��,n (X, d) =
⋃
k �n

�k (X, d)
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and ��,n (X, d) is a set of those � ∈ � such that � ∈ ⋃k �n �k (X, d) or the image
of the operator dn (�) is not closed, whenever (X, d) is a cochain complex. Note that

��,n (X, d) = ��,n

(
X, d

)
and ��,n (X, d) = ��,n

(
X, d

)
, n ∈ Z.

Definition 1. The set-valued functions ��,n, ��,n (resp., ��,n, ��,n), n ∈ Z, defined
on the class of all parametrized (co)chain Banach space complexes are called the
Slodkowski spectra. The set

�t (X, d) = ��,∞ (X, d) = ��,−∞ (X, d) =
⋃
n∈Z

�n (X, d)

(resp., �t (X, d) = ��,∞ (X, d) = ��,−∞ (X, d) = ⋃n∈Z �n (X, d) for the cochain com-
plex (X, d)) is called the Taylor spectrum of (X, d). We set S = S� ∪ S� (resp.,

S = S� ∪ S�), where S� =
{
��,n : n ∈ Z

}
, S� =

{
��,n : n ∈ Z

} (
resp., S� ={

��,n : n ∈ Z
}

, S� = {��,n : n ∈ Z
} )

.

Further, � ∈ S denotes one of the Slodkowski spectra if the latter will not specially
be indicated. Let (X, d) be a �-Banach complex. Using the Sequence Prime Principle,
we obtain (see [22]) that

��,n
(
X∗, d∗

) = ��,n (X, d) , ��,n

(
X∗, d∗

) = ��,n (X, d) . (2.1)

Moreover, if (X, d) is a chain �-Banach complex then ��,n
(
X∗, d∗

) = ��,n (X, d), and
��,n

(
X∗, d∗

) = ��,n (X, d) whenever (X, d) is a cochain complex (see [11]).

Theorem 1 (Dosiev [11]). Let (X, d) be a (co)chain �-Banach complex and let Y ∈
BS.

(a) Then � (X, d) ⊆ � (B (Y, (X, d))) and � (X, d) ⊆ �
(
(X, d) ⊗̂Y

)
for all � ∈ S.

Moreover, these inclusion become equalities whenever Y ∈ Proj and Y ∈ Flat,
respectively.

(b) If U is an ultrafilter then ��,n (XU, dU) =⋃k �n �k (XU, dU) for all ��,n ∈ S�.
Moreover, � (X, d) = � (XU, dU) for all � ∈ S.

Now let us remind a cochain version of the spectral mapping properties for �-type
Slodkowski spectra (see Definition 1) proposed in [11].

Let (X, d) and
(
Y, d

)
be a nonnegative cochain parametrized Banach space com-

plexes such that both complexes have the same first term X = X0 = Y 0 and let � and �
be their space of parameters, respectively. We say that these complexes are �-spectrally
connected if there exists a nonnegative cochain � × �-Banach bicomplex

(
Z, d′, d′′

)
such

(
Z0,•, d0,•

′′
)
= (X, d),

(
Z•,0, d•,0′

)
=
(
Y, d

)
and �

(
Zs,•, ds,•′′

) ⊆ � (X, d),
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�
(
Z•,m, d

•,m
′
) ⊆ �

(
Y, d

)
for all � ∈ S�, and s, m ∈ N. Thus (Z, d′ (�) , d′′ (�)) is a

nonnegative Banach space bicomplex with the initial space X for each (�, �) ∈ �×�.
Their total complexes Tot (Z, d′ (�) , d′′ (�)), (�, �) ∈ � × �, define � × �-Banach
complex Tot (Z, d′ , d′′) and let � (Z, d′ , d′′) denotes a Slodkowski spectrum of the latter
complex.

Definition 2. Let (X, d) and
(
Y, d

)
be �-spectrally connected complexes parametrized

on a topological spaces � and �, respectively, and let (Z, d′ , d′′) be a �×�-bicomplex
connecting these complexes. By spectral mapping with respect to (Z, d′ , d′′) we mean
a continuous map f : �→ � such that

(a) all vertical cohomology complexes

0→ Hm (X, d (�))→· · · → Hm
(
Zn,•, dn,•

′′ (�)
)D

n,m′ (�)−→ Hm
(
Zn+1,•, dn+1,•

′′ (�)
)
→ · · ·

of the bicomplex (Z, d′ (�) , d′′ (�)) are exact whenever � �= f (�);
(b) D

0,m
′ (f (�)) = 0 whenever the cohomology space Hm (X, d (�)) is Hausdorff.

If only the second condition (b) is satisfied then we say that f is a prespectral
mapping.

Note that the first condition (a) of Definition 2, means that all terms ′Emn
2 (�, �),

m, n ∈ Z+, of the first spectral sequence associated by the bicomplex (Z, d′ (�) , d′′ (�))

(see [15, Ch. 1, item 4.8]) are vanishing whenever � �= f (�).
The following forward and backward spectral mapping properties of spectrally con-

nected complexes were proved in [11].

Theorem 2. Let (X, d) and
(
Y, d

)
be a cochain complexes parametrized on � and

�, respectively, and let U be an ultrafilter. If (XU, dU) and
(
Y, d

)
are �-spectrally

connected and f : �→ � is a prespectral mapping then

f (� (X, d)) ⊆ �
(
Y, d

)
for all � ∈ S�.

Theorem 3. Let (X, d) and
(
Y, d

)
be �-spectrally connected Banach space complexes

parametrized on � and �, respectively, f : � → � a spectral mapping with respect

to a � × �-bicomplex (Z, d′ , d′′) connecting (X, d) and
(
Y, d

)
, and let � ∈ S�. If

�
(
Y, d

)
= �� (� (Z, d′ , d′′)) then

�
(
Y, d

)
⊆ f (� (X, d)) ,

where �� : �× �→ � is the canonical projection.
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2.3. Full subalgebras

Let A be a unital associative algebra. A subalgebra B ⊆ A is said to be a full (or
inverse closed) subalgebra [2, Ch.1, Section 1.4], if any invertible in A element of B
is invertible in B. Thus spA (b) = spB (b) for all b ∈ B. One easily check that the
full subalgebras are stable under taking arbitrary intersections, so it makes sense to
define the full subalgebra R (M) in A generated by a subset M ⊆ A. The elements
of the subalgebra R (M) can be interpreted as a set of values of all formal “rational
functions” with the set M of variables in the algebra A (see [26, 5, Section 2]). Namely,
let S be a set with a mapping � : S → A into the algebra A and let M = im (�).
One can define the “rational functions” with the set S of variables and their actions in
A as a collection of formal expressions from RS,� = ⋃n∈Z+ Rn

S,� with the canonical
mapping �̂ : RS,� → A, �̂ (f (S)) = f (M), extending �, which is inductively defined
by the following way. Let R0

S,� be the free algebra (of all polynomials) generated by

the set S, and let R0 (M) =
{
f (M) : f (S) ∈ R0

S,�

}
be the values of all polynomials

in the algebra A following �. If the collection Rn−1
S,� and their images Rn−1 (M) have

been defined, then the expressions from Rn
S,� is defined as the free algebra (of all

polynomials) generated by Rn−1
S,� and all formal expressions f−1 (S), f (S) ∈ Rn−1

S,� ,

for which f (M) is invertible in A. We set �̂
(
f−1 (S)

) = f−1 (M) = f (M)−1. Thus
R (M) =⋃n∈Z+ Rn (M). If f (S) ∈ Rn

S,� then we say that f (S) has an order n. Note
also that if ε : A → B is a unital algebra homomorphism and E is the image of the
family M by means of ε, that is, E = ε (M), then RS,� ⊆ RS,ε·�, and ε (f (M)) =
f (E) for f (S) ∈ RS,�. The following useful lemma was proved by Turovskii [25].

Lemma 3. Let B be a Banach algebra and let g be its finite-dimensional nilpotent
Lie subalgebra such that the full subalgebra R (g) ⊆ B generated by g is dense in B.
Then B is commutative modulo its Jacobson radical Rad B.

The following simple assertions will be used in Sections 3, 4.

Lemma 4. Let S be a set and let � : S → A, � : S → B be mappings into algebras
A and B, respectively. If RS,� ⊆ RS,� and spA (f (� (S))) = spB (f (� (S))) for all
f (S) ∈ RS,�, then RS,� = RS,�.

Proof. We proceed by induction on the order of rational functions taken from RS,�.
It is beyond a doubt R0

S,� ⊆ RS,�. Take f (S) ∈ Rn
S,�. By definition, f (S) = p (�)

is a (free) polynomial taken by a set � =
{
g	 (S) , g−1


 (S) : g	 (S) , g
 (S) ∈ Rn−1
S,�

}
.

By induction hypothesis,
⋃n−1

k=0 Rk
S,� ⊆ RS,�. Therefore, one suffices to assume that

f (S) = g−1 (S) for some g (S) ∈ Rn−1
S,� . Then g (S) ∈ RS,� and g (� (S)) is invertible

in B. With spA (g (� (S))) = spB (g (� (S))) in mind, infer that g (� (S)) is invertible
in A, too. The latter in turn implies that g−1 (S) ∈ RS,�, that is, f (S) ∈ RS,�. �
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Now let S and W be sets with a surjective map � : S → W and let � : W → A
be a mapping into an algebra A. One define maps �̂ : RW,� → A and �̂ : RS,� → A
extending � and �, respectively, where � = � · �.

Lemma 5. There exists a unique mapping �̃ : RS,� → RW,� extending � such that
�̂ · �̃ = �̂.

Proof. We proceed by induction on the order of rational functions. Note that � extend
uniquely up to an algebra homomorphism �0 : R0

S,� → R0
W,�, �0 (f (S)) = f (W).

Evidently, �̂ · �0 = �̂.
By induction hypothesis, one uniquely defines a map �n−1 : Rn−1

S,� → Rn−1
W,� such that

�̂ · �n−1 = �̂. Take f−1 (S) ∈ RS,� such that f (S) ∈ Rn−1
S,� . By definition, f (� (S)) is

invertible in A. But, f (� (S)) = �̂ (f (S)) = �̂�n−1 (f (S)), whence g−1 (W) ∈ Rn
W,�,

where g (W) = �n−1 (f (S)). We set �n
(
f−1 (S)

) = g−1 (W). Then �̂
(
�n
(
f−1 (S)

)) =
�̂
(
g−1 (W)

) = �̂ (g (W))−1 = �̂ (f (S))−1 = �̂
(
f−1 (S)

)
. One defines a mapping

�n : Rn−1
S,� ∪ Rn−1

S,� → Rn
W,�, where Rn−1

S,� =
{
f−1 (S) : f (S) ∈ Rn−1

S,�

}
. The latter

is uniquely extended up to an algebra homomorphism �n : Rn
S,� → Rn

W,�. Obviously,
�̂ · �n = �̂. �

3. The complexes induced by a B–L algebra representation

To apply the spectral mapping framework (Section 2.2) to a spectral theory of B–L
(Banach–Lie) algebra representations, we consider parametrized Banach space com-
plexes induced by a B–L algebra representation and some technical machinery to op-
erate with them, that is the aim of this section.

3.1. Banach modules over B–L algebras

A normed Lie algebra (resp., B–L algebra) E is a normed (resp., Banach) space and a
Lie algebra with its jointly continuous Lie brackets [·, ·] : E×E→ E, (a, b) 
→ [a, b].
We say that a B–L algebra E is a quasinilpotent B–L algebra generated by S ⊆ E

if the Lie subalgebra generated by S is dense in E and all operators ad (a) ∈ B (E),
ad (a) b = [a, b] (a ∈ E), of the adjoint representation are quasinilpotent (see [6]).

A Banach module over a B–L algebra E (shortly, a Banach E-module) is a Banach
space X with a bounded Lie representation � : E → B (X). To indicate the Lie
representation, we briefly say that the pair (X, �) is a E-module. A functional � ∈ E∗
is said to be a character of E, if � ([E, E]) = 0. The space of all characters (furnished
with the ∗-weak topology) of a B–L algebra E is denoted by � (E) (⊆ E∗). The module
dual to X is defined as the pair (X∗, �∗), where �∗ : Eop → B (X∗), �∗ (a) = � (a)∗
is the dual Lie representation, Eop is the opposite Lie algebra. A Banach E-module
(X, �) generates the following chain Banach space complex:

C• (�) : 0← X
d0←−X⊗̂E

d1←−· · · dn−1←−X⊗̂ ∧n E
dn←−· · ·
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with the differential

dnx ⊗ a =
n+1∑
i=1

(−1)i+1 � (ai) x ⊗ ai +
∑
i<j

(−1)i+j−1 x ⊗ [ai, aj

] ∧ ai,j ,

where a = a1 ∧ · · · ∧ an+1 ∈ ∧n+1E, ai (resp., ai,j ) is obtained from a throwing out
of ith vector ai (resp., ai and aj ). If dim (E) < ∞ then the latter complex is known
as the Koszul complex of E-module X. The module (X, �) generates also the cochain
complex

C• (�) : 0→ X
d0→C1 (E, X)

d1→· · · dn−1→ Cn (E, X)
dn→· · ·

with the differential

dn

(
a
) = n+1∑

i=1

(−1)i+1 � (ai) 

(
ai

)+∑
i<j

(−1)i+j 

([

ai, aj

] ∧ ai,j

)
,

where 
 ∈ Cn (E, X) = B (∧nE, X). The parametrized on � (E) (co)chain Banach
space complex C• (�− �) (resp., C• (�− �)), � ∈ � (E), is denoted by C• (�) (resp.,
C• (�)). We write C (�) to indicate one of these complexes (chain or cochain). Their
spectra � (C (�)), � ∈ S, are called the Slodkowski spectra (resp., Taylor spectrum) of
the E-module X or the Lie representation � and we denote them by � (�), � ∈ S. Since
C• (�− �)∗ = C• (�∗ − �) to within an isomorphism in BS, it follows using (2.1) that

��,n
(
�∗
) = ��,n (�) , ��,n

(
�∗
) = ��,n (�) , n ∈ Z+. (3.1)

Now, let U be an ultrafilter, X ∈ BS and let XU be the ultrapower of X. The Lie
representation �U : E → B (XU), �U (a) = � (a)U, is called an ultrapower of �. Thus
(XU, �U) is a Banach E-module. The following notion was introduced in [6].

Definition 3. Let (X, �) be a Banach E-module and � ∈ S. We define ultraspectrum
�u (�) (resp., �u (�)) of the module (X, �), or the Lie representation �, as the union of
spectra � (�U) taken over all countably incomplete ultrafilters U.

Note that (see [6, Lemma 5.4]) if dim (E) <∞ then

C (�)U = C (�U) and �u (�) = � (�) (resp., �u (�) = � (�)) (3.2)

for all � ∈ S.
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3.2. The Lie representation �

Now let E be a B–L algebra and let I be its closed ideal. Then its exterior power
∧nI makes into a Banach E-module due to the representation

Tn,I : E→ B (∧nI
)
, Tn,I (a)

(
u
) = n∑

i=1

(−1)i−1 (ad (a) ui) ∧ ui,

where u = u1∧ · · · ∧un. The latter extends the adjoint representation of E. If (X, �) is
a Banach E-module, then the space Cn (I, X) furnishes a Banach E-module structure
by the Lie representation

�n,I : E→ B (Cn (I, X)
)
, �n,I (a) = L�(a) − RTn,I (a),

where L�(a) (resp., RTn,I (a)) is the left (resp., right) multiplication operator. We set
Tn = Tn,E and �n = �n,E . Note that (see [3, Ch. 1]),

dn�n (a) = �n+1 (a) dn, (3.3)

dn−1in (a)+ in+1 (a) dn = �n (a) , (3.4)

�n−1 (a) in (b)− in (b) �n (a) = in ([a, b]) , (3.5)

where dn is the differential of the complex C• (�) and in (a) : Cn (E, X)→ Cn−1 (E,

X), (in (a) 
) b = 
 (a ∧ b), is so called a homotopy operator. Respectively, X⊗̂∧n E

is a E-module by the representation ϑn : E→ B (X⊗̂ ∧n E
)
, ϑn (a) = � (a)⊗ 1+ 1⊗

Tn (a), and formulae similar (3.3), (3.4) and (3.5) are also valid for the chain complex
C• (�).

Proposition 1. Let 	n :
(
X⊗̂ ∧n E

)∗ → B (∧nE, X∗) be the canonical isomorphism in
BS given by the rule 	n (f )

(
u
)
(x) = f

(
x ⊗ u

)
, x ∈ X, u ∈ ∧nE. Then �′n (a) 	n =

	nϑn (a)∗, where �′n : Eop → B (Cn (E, X∗)), �′n (a) = L�∗(a) − RT
op
n (a), is the Lie

representation induced by the dual representation �∗ : Eop → B (X∗).

Proof. Let T
op
n : Eop → B (∧nE) be the extension of the adjoint representation of

Eop. One easily check that T
op
n (a) = −Tn (a), a ∈ E. Then

RT
op
n (a)	n (f )

(
u
)
(x)=−	n (f )

(
Tn (a) u

)
(x) = −f

(
x ⊗ Tn (a) u

)
=− (1⊗ Tn (a))∗ (f )

(
x ⊗ u

)
=−	n

(
(1⊗ Tn (a))∗ (f )

) (
u
)
(x) ,
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that is, −RT
op
n (a)	n = 	n (1⊗ Tn (a))∗. Further,

L�∗(a)	n (f )
(
u
)
(x)= �∗ (a)

(
	n (f )

(
u
))

(x) = 	n (f )
(
u
)
(� (a) x) = f

(
� (a) x ⊗ u

)
= (� (a)⊗ 1)∗ (f )

(
x ⊗ u

) = 	n
(
(� (a)⊗ 1)∗ (f )

) (
u
)
(x) ,

that is, L�∗(a)	n (f ) = 	n
(
(� (a)⊗ 1)∗ (f )

)
. It follows that

�′n (a) 	n =
(
L�∗(a) − RT

op
n (a)

)
	n = 	n

(
(� (a)⊗ 1)∗ + (1⊗ Tn (a))∗

) = 	nϑn (a)∗ ,

that is, �′n (a) 	n = 	nϑn (a)∗. �

Note that all 	n are isomorphisms and
(
X⊗̂ ∧n E

)∗ = X∗⊗̂ (∧nE)∗ whenever dim(E)

< ∞, and in this case, the dual representation ϑ∗ : Eop → B ((X⊗̂ ∧ E
)∗), ϑ∗ (a) =

ϑ (a)∗ (here ϑ (a) = ∑n ϑn (a)), is reduced (to within an isomorphism) to the Lie
representation �′ : Eop → B (B (∧E, X∗)), �′ (a) =∑n �′n (a), by Proposition 1.

Corollary 1. Let E be a finite-dimensional nilpotent Lie algebra and let (X, �) be a Ba-
nach E-module. The dual representation �∗ : Eop → B (B (∧E, X)∗

)
, �∗ (a) = � (a)∗,

is reduced (to within an isomorphism) to the representation �′ : Eop → B (B (∧E, X∗)),
�′ (a) = L�∗(a) − RT op(a).

Proof. Let n = dim (E). At first, note that ∧kE∗ = (∧kE
)∗

and the map �k :
X ⊗ ∧kE∗ → B (∧kE, X

)
, �k (x ⊗ f )

(
u
) = f

(
u
)
x, f ∈ ∧kE∗, u ∈ ∧kE, is an

isomorphism in BS. Moreover, �k (a) �k = �k

(
� (a)⊗ 1− 1⊗ Tk (a)∗

)
. Now let �(k)

w :
∧kE∗ → ∧n−kE be an isomorphism depending on the choice of some fixed w ∈ ∧nE

(see [1, Ch.1, Section 11]). Taking into account that E is a nilpotent Lie algebra, we
conclude �(k)

w Tk (a)∗ = −Tn−k (a) �(k)
w by virtue of Corollary 1 from [1, Ch. 1, Section

11]. It follows that(
1X ⊗ �(k)

w

) (
� (a)⊗ 1− 1⊗ Tk (a)∗

) = (� (a)⊗ 1+ 1⊗ Tn−k (a))
(

1X ⊗ �(k)
w

)
.

Thus the linear map ε =∑k

(
1X ⊗ �(k)

w

)
�−1
k implements a topological isomorphism

ε : B (∧E, X)→ X ⊗∧E

such that ε� (a) = ϑ (a) ε for all a ∈ E, that is, � = ϑ to within an isomorphism.
Using Proposition 1, we infer that �∗ = ϑ∗ = �′ to within an isomorphism. �

Now let E be a finite-dimensional Lie algebra, G a subspace in E such that [E, G] =
{0} (in particular, G is a Lie ideal), W a complemented to G subspace in E and let
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P ∈ B (E) be a projection onto G along W. For brevity, we write (up to the end
of this section) Gs and Ek instead of ∧sG and ∧kE, respectively. Fix n ∈ N and
let us introduce the following subspaces Gs ∧ Ek (resp., Gs ∧ W ∧ Ek−1) in En,
s+ k = n, generated by vectors u∧ v (resp., u∧w∧ v), where u = u1∧ · · · ∧us ∈ Gs ,
v = v1 ∧ · · · ∧ vk ∈ Ek (resp., w ∈ W , v ∈ Ek−1). Note that all subspaces Gs ∧ Ek

are E-submodules in En, that is, they are invariant under all operators Tn (a), a ∈ E.
Indeed, Tn (a)

(
u ∧ v

) = u ∧ Tk (a) v, thus, Tn (a) |Gs ∧ Ek = 1Gs ∧ Tk (a). Moreover,
one can easily verify that

Gs ∧ Ek = Gs+1 ∧ Ek−1 ⊕Gs ∧W ∧ Ek−1,

therefore the operator Tn (a) |Gs ∧ Ek has a triangular operator matrix with respect to
this decomposition. To find that, we introduce the following operators Aa ∈ B (W, G),
Aa = P ad (a) |W , and Ba ∈ B (W), Ba = (1− P) ad (a) |W , where a ∈ E. We also set
Aa = 1Gs ∧ Aa ∧ 1Ek−1 and Ba = 1Gs ∧ Ba ∧ 1Ek−1 . Then

Tn (a)
(
u ∧ w ∧ v

) = u ∧ Aaw ∧ v + u ∧ Baw ∧ v + u ∧ w ∧ Tk−1 (a) v

whenever u ∧ w ∧ v ∈ Gs ∧W ∧ Ek−1. It follows that

Tn (a) |Gs ∧ Ek =
(

1Gs+1 ∧ Tk−1 (a) Aa

0 1Gs∧W ∧ Tk−1 (a)+ Ba

)
.

Now let F = E/G be the quotient Lie algebra and let � : E→ F be the quotient map.
Bearing in mind that the exterior power ∧F of the space F is a (grading) F-module
by the Lie representation T : F → B (∧F) extending the adjoint representation, we
conclude that it makes into a E-module via pull back along the Lie homomorphism �.
The exterior power ∧� : ∧E→ ∧F of � is a (grading) E-module morphism, because of
∧�·Tn (a) = Tn (� (a))·∧� for all a ∈ E. In particular, all spaces Gs⊗Fk (Fk = ∧kF ) are
turning into E-modules by means of the Lie representations 1⊗Tk� : E→ B (Gs ⊗ Fk),
(1⊗ Tk�) a = 1Gs ⊗ Tk (� (a)).

Lemma 6. The sequence 0← Gs ⊗Fk

�s,k←−Gs ∧Ek
	←−Gs+1 ∧Ek−1 ← 0 is an exact

sequence of E-modules, where 	 is the embedding and �s,k

(
u ∧ v

) = u⊗∧k�
(
v
)
.

Proof. One needs (see [13, Proposition 2.5]) only to prove that �s,k is a E-module
morphism. For the latter, one suffices to prove that

(
1Gs ⊗ Tk� (a)

) · �s,k = �s,k ·(
1Gs ∧ Tk (a)

)
for all a ∈ E, which verifies immediately. �

Now let X ∈ BS and let � : E → B (X) be a Lie representation of a finite-
dimensional Lie algebra E on X. As we noted above the Banach space B (∧E, X)

makes into a (grading) E-module by means of the representation �. Undoubtedly, all
spaces B (Gs ∧ Ek, X) are E-submodules in B (En, X), where G is defined as above
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and n = s + k. Moreover,

B (Gs ∧ Ek, X) = B (Gs+1 ∧ Ek−1, X)⊕ B (Gs ∧W ∧ Ek−1, X) (3.6)

and the operator � (a) (a ∈ E) has the following matrix form with respect to this
decomposition

�n (a) |B (Gs ∧ Ek, X) =
(

1Gs+1 ∧ �k−1 (a) 0
−RAa

1Gs∧W ∧ �k−1 (a)− RBa

)
, (3.7)

where 1Gs+1 ∧ �k−1 (a) = L�(a) − R1Gs+1∧Tk−1(a) and 1Gs∧W ∧ �k−1 (a) = L�(a) −
R1Gs∧W∧Tk−1(a). Let us introduce the following operators

Ds,k (a) =
(

1Gs+1 ∧ �k−1 (a) 0
0 1Gs∧W ∧ �k−1 (a)− RBa

)
, Ns,k (a) =

(
0 0
RAa

0

)
.

It is clear that �n (a) |B (Gs ∧ Ek, X) = Ds,k (a) − Ns,k (a), a ∈ E. Moreover, the
correspondence Ds,k : E→ B (B (Gs ∧ Ek, X)), a 
→ Ds,k (a), is a Lie representation.

Indeed, taking into account that
[
1Gs∧W ∧ �k−1 (b) , RBa

]
= 0, a, b ∈ E, one suffices

to prove that [Ba, Bb] = B[a,b] for all a, b ∈ E. The latter verifies immediately:

[Ba, Bb] (w)= (1− P) ([a, (1− P) [b, w]]− [b, (1− P) [a, w]])

= (1− P) ([a, [b, w]]− [b, [a, w]]) = (1− P) [[a, b] , w]

=B[a,b] (w)

(we used here that [E, G] = {0}). Note also that Ns,k (a) Ns,k (b) = 0, a, b ∈ E.

Lemma 7. Let Es,k be a Lie subalgebra B (Gs∧Ek,X) generated by operators Ns,k (a),
Ds,k (b), a, b ∈ E. If E is a nilpotent Lie algebra then so is Es,k .

Proof. Let us assume that E(t+1) = {0}, where E(k) is the kth member of the lower
central series of E, t ∈ N. Note that (1− P) ([a, b]) ∈ E(2) + G for all a, b ∈ E.
Then [(1− P) ([a, b]) , c] ∈ [E(2) +G, E

] ⊆ [E(2), E
] = E(3), c ∈ E. It follows that

im
(
AaBb1 · · ·Bbm

) ⊆ P
(
E(m+2)

)
, whence AaBb1 · · ·Bbt−1 = 0 for all a, b1, . . . , bt−1 ∈

E. But, the direct computations show that

ad
(
Ds,k (bt−1)

) · · · ad
(
Ds,k (b1)

) (
Ns,k (a)

) = ( 0 0
RC(a,b1,...,bt−1) 0

)
= 0,

where C (a, b1, . . . , bt−1) = (−1)t−1 1Gs ∧ AaBb1 · · ·Bbt−1 ∧ 1Ek−1 . It remains to note
that Ds,k is a Lie representation and operators Ns,k (a) generate a commutative Lie
ideal. �
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Proposition 2. Let E be a finite-dimensional nilpotent Lie algebra, G ⊆ E a subspace
such that [E, G] = {0}, (X, �) a Banach E-module and let A� be a closed full subalge-
bra in B (B (∧E, X)) generated by the Lie subalgebra � (E). Then all B (Gs ∧ Ek, X)

are A�-invariant subspaces in B (∧E, X).

Proof. We proceed by induction on s. Obviously, the assertion is true for s = 0. As-
sume that B (Gs ∧ Ek, X) is invariant under A� and let Bs,� = A�|B (Gs ∧ Ek, X).
Let us prove that so is the subspace B (Gs+1 ∧ Ek−1, X). The Lie subalgebra Es,k ⊆
B (B (Gs ∧ Ek, X)) generated by operators Ns,k (a), Ds,k (b), a, b ∈ E, is nilpotent by
virtue of Lemma 7. By Lemma 3, the closure Bs of the full subalgebra R (Es,k

) ⊆
B (B (Gs ∧ Ek, X)) generated by Es,k is commutative modulo its Jacobson radical
RadBs . Then Ns,k (a) ∈ RadBs , a ∈ E. Since � (E) |B (Gs ∧ Ek, X) ⊆ Es,k , it follows
that Bs,� ⊆ Bs . Moreover, RE,Ds,k

⊆ RE,� (see Section 2.3) by virtue of (3.7) (a
triangular operator matrix with invertible diagonal entries is invertible itself), thereupon
r (� (E)) − r

(
Ds,k (E)

) ∈ RadBs for all r (E) ∈ RE,Ds,k
. Taking into account that

Bs is a full subalgebra, we conclude that sp
(
r
(
Ds,k (E)

)) = spBs

(
r
(
Ds,k (E)

)) =
spBs

(r (� (E))) = sp (r (� (E))), r (E) ∈ RE,Ds,k
. Using Lemma 4, we infer that

RE,Ds,k
= RE,� and r (� (E)) has a lower triangular operator matrix with respect

to the decomposition (3.6) for all rational functions r (E) ∈ RE,� due to (3.7). Thus
Bs,� (B (Gs+1 ∧ Ek−1, X)) ⊆ B (Gs+1 ∧ Ek−1, X), that is, B (Gs+1 ∧ Ek−1, X) is in-
variant under the subalgebra A�. �

Now let again F = E/G, [E, G] = {0}, X a Banach F-module with a Lie representa-
tion � : F → B (X) and let � : E→ B (X), � = � · �, where � : E→ F is the quotient
map. The spaces B (∧F, X) and B (∧E, X) are turning into modules over F and E,
respectively by the � type representations. To distinct their denotations we write �� and
�� for them, respectively. Consider the cochain complex C• (�) generated by �. One can
easily verify that dkB (Gs ∧ Ek, X) ⊆ B (Gs ∧ Ek+1, X) (G ⊆ ker (�)), where dk is the
differential of the complex C• (�), whence all C•s (�) = {B (Gs ∧ Ek, X) , dk, k ∈ Z+

}
are subcomplexes of the cochain complex C• (�). Moreover, as follows from the above
reasoning and (3.3), C•s (�) is a complex of E-modules by the representation ��. Let
us also introduce a cochain complex B (Gs, C

• (�)) as the result of action of the
functor B (Gs, ?) subjected to the cochain complex C• (�) generated by �. The latter
is a complex of F-modules by the left regular representation taken by ��. Therefore
B (Gs, C

• (�)) is a complex of E-modules along the Lie homomorphism �.

Lemma 8. The following sequences

0→ B (Gs, B (Fk, X))
�X
s,k−→B (Gs ∧ Ek, X)

	X−→B (Gs+1 ∧ Ek−1, X)→ 0

are exact sequences of E-modules, which for each s ∈ Z+ associate an exact sequence

0→ B (Gs, C
• (�)

) �X
s−→C•s (�)

	X−→C•s+1 (�)→ 0

of E-module complexes, where �X
s,k
 = 
 · �s,k , 	X
 = 
 · 	.
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Proof. The exactness of all these complexes follows from Lemma 6. It is beyond a
doubt, 	X is a morphism of E-modules, even A�� -modules (see Proposition 2). Demon-
strate that �X

s,k is a E-module morphism. Take 
 ∈ B (Gs, B (Fk, X)), a ∈ E, u ∧ v ∈
Gs ∧ Ek . Then

�X
s,k

(
L���(a)


)
u ∧ v =L���(a)


(
�s,k

(
u ∧ v

)) = L���(a)

(
u⊗∧k�

(
v
))

= (�� (� (a)) 

(
u
)) (∧k�

(
v
))

= � (a) 

(
u
) (∧k�

(
v
))− 


(
u
) (

Tk (� (a)) ∧k �
(
v
))

= � (a) 

(
u
) (∧k�

(
v
))− 


(
u
) (∧k�Tk (a)

(
v
))

= � (a) 

(
�s,k

(
u ∧ v

))− 

(
�s,k

(
u ∧ Tk (a) v

))
= �� (a) �X

s,k (
) u ∧ v,

that is, �X
s,kL���(a) = �� (a) �X

s,k . The rest is clear. �

Remark 1. Note that the grading powers of the complex morphisms �X
s and 	X from

Lemma 8 are equal 0 and −1, respectively.

Now let Hi
� = Hi (C• (�)), Hi

� = Hi (C• (�)), Hi
s = Hi

(
C•s (�)

)
, i, s ∈ Z+, be the

cohomologies.

Lemma 9. Let n = dim (E), m = dim (F ). Then Hi
� = {0} for all i, n − k�i�n, iff

Hi
� = {0} for all i, m− k�i�m, where k ∈ Z+.

Proof. By Lemma 8, we have exact sequence

0→ B (Gs, C
• (�)

) �X
s−→C•s (�)

	X−→C•s+1 (�)→ 0

of complexes, for each s ∈ Z+. Taking into account Remark 1, let us write the induced
long exact sequence of cohomologies:

0→ B
(
Gs, H

0
�

)
→ H 0

s → 0→ · · · → Hi−2
s+1 → B

(
Gs, H

i
�

)
→ Hi

s → Hi−1
s+1 → · · ·

→ B
(
Gs, H

m
�

)
→ Hm

s → Hm−1
s+1 → 0→ Hm+1

s → Hm
s+1 → 0→ · · · . (3.8)
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It follows that Hm+i
s = Hm+i−1

s+1 , 0�s�n−m, i ∈ N. The complex (3.8) for s = n−m

has the following form:

0→H 0
� → H 0

n−m→ 0→ · · · → Hi−2
n−m+1 → Hi

�→ Hi
n−m→ Hi−1

n−m+1 → · · ·
→Hm

� → Hm
n−m→ Hm−1

n−m+1 → 0→ Hm+1
n−m → Hm

n−m+1 → 0→ · · · .

With Gn−m+1 = {0} in mind, infer that Hi
n−m+1 = 0 and Hi

� = Hi
n−m, i ∈ Z+. By

definition, Hi
� = Hi

0 and from (3.8) for s = 0, we obtain that the following exact
complex

0→H 0
� → H 0

� → 0→ · · · → Hi−2
1 → Hi

�→ Hi
� → Hi−1

1 → · · ·
→Hm

� → Hm
� → Hm−1

1 → 0→ Hm+1
� → Hm

1 → 0→ · · · .

Now assume that Hi
� = {0} for all i, m− k� i�m. For fixed i, n− k� i�n, from

the latter sequence we deduce that Hi
� = Hi−1

1 . By the same reasoning, from (3.8) for
s = 1, we deduce that Hi−1

1 = Hi−2
2 and so on. Then Hi

� = Hi−n+m
n−m = Hi−n+m

� = {0}
(m− k� i − n+m).

Conversely, assume that Hi
0 = Hi

� = {0}, n − k� i�n. We have to prove that
Hm−i

� = {0}, 0� i�k. We proceed by induction on k. If k = 0 then Hm
� = Hm

n−m =
Hm+1

n−m−1 = · · · = Hn
0 = {0}, whence Hm

� = {0}.
Now let k > 0. By induction hypothesis, Hm−i

� = {0}, 0� i�k − 1. Using the

exactness (3.8) again, we infer that Hm
s = Hm−1

s+1 , Hm−1
s = Hm−2

s+1 , . . . , Hm−k+1
s =

Hm−k
s+1 for all s. Fix t, 1� t �n−m. For s = t − 1, we deduce that Hm−k

t = Hm−k+1
t−1 ,

for s = t − 2, Hm−k+1
t−1 = Hm−k+2

t−2 etc. We conclude that Hm−k
t = Hm

t−k . In particular,

Hm−k
� = Hm−k

n−m = Hm
n−m−k . But Hm

n−m−k = Hm+1
n−m−k−1 = · · · = Hn−k

0 = Hn−k
� = {0},

that is, Hm−k
� = {0}. �

Proposition 3. Let E be a finite-dimensional nilpotent Lie algebra, � : E → F a Lie
epimorphism, and let (X, �) be a F-module. Then � (� · �) = � (�) · � for all � ∈ S.

Proof. At first, note that spectra ��,k and ��,k (resp., ��,k and ��,k) coincide on the
class of nilpotent Lie algebra representations due to [13, Proposition 3.1]. Moreover,
one suffices to prove the assertion only for spectra � = ��,k ∈ S�. Indeed, if the
assertion has been proved for all � ∈ S� then, by using (3.1), we conclude that

��,k (� · �)= ��,k (� · �) = ��,k
(
(� · �)∗) = ��,k

(
�∗ · �) = ��,k

(
�∗
) · � = ��,k (�) · �

= ��,k (�) · �.
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Now assume that � = ��,k . Take � ∈ � (� · �) and u ∈ E such that � (u) = 0. By the
Projection Property [13] (see also below Proposition 9), � (u) ∈ sp (� (� (u))) = {0},
whence the functional � ∈ � (F ), � · � = �, is defined correctly. Moreover, � · �− � =
(�− �) ·�. If [G, E] = {0}, where G = ker (�), then � ∈ � (�) and vice-verse, by virtue
of Lemma 9.

Now assume that [G, E] �= {0}. We use the argument from the proof of [13, Propo-
sition 2.6]. Let us introduce Lie ideals G0 = G, Gk =

[
E, Gk−1

]
, k�1. Since E is a

nilpotent Lie algebra, it follows that Gs+1 = {0} for some s. Moreover, the epimorphism
� splits into the product �1�2 · · · �s+1, where �i : E/Gi → E/Gi−1 is the quotient map
(E/G0 = F ). But ker (�i ) = Gi−1/Gi and [E/Gi, ker (�i )] = {0} for all i. Then
� (�) � = � (�) �1�2 · · · �s+1 = � (��1) �2 · · · �s+1 = · · · = � (��1�2 · · · �s+1) = � (��),
that is, � (�) � = � (��). �

4. The algebras dominating over a g-module

In this section, we introduce a formal model of a noncommutative functional calculus
for a nilpotent Lie algebra g and prove the relevant spectral mapping theorem. The
central role plays splitting over a Banach g-module X elements motivating holomorphic
functions in noncommuting variables from g acting on X.

Everywhere below g denotes a finite-dimensional nilpotent Lie algebra, U (g) is
the universal enveloping algebra of g, and (X, �) is a Banach g-module. Let A be
a topological algebra. By a normed Lie subalgebra in A we mean a Lie subalgebra
F ⊆ A furnished with a certain norm ‖·‖ such that (F, ‖·‖) is a normed Lie algebra
and the identity embedding F ↪→ A is continuous. For instance, if A is a Banach
algebra then a normed Lie algebra (F, ‖·‖) is a normed Lie subalgebra in A whenever
F ⊆ A and ‖·‖ � ‖·‖A. The space of all continuous characters on A furnished with
the ∗-weak topology is denoted by Spec (A).

4.1. Properties of the dominating algebras

The following definition generalizes the dominated Banach algebras proposed in [6,
Section 7].

Definition 4. Let Ag be a Hausdorff locally convex algebra with a fixed Lie algebra
homomorphism � : g → Ag. We say that Ag dominates over the module (X, �) and
write Ag � (X, �), if there exists a continuous algebra homomorphism �̂ : Ag →
B (B (∧g, X)) such that �̂ · � = � and �̂ (im (̂�)) is dense in �̂

(Ag), where �̂ : Rg,�→
Ag is the extension of the map � (see Section 2.3). The elements from the subalgebra
im (̂�)(= R (im (�))) are called rational functions in Ag acting on X.

Example 1. If Ag is the universal enveloping algebra U (g) furnished with the finest
locally convex topology and � is the canonical embedding g→ U (g), then Ag � (X, �)

for each g-module X.
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Example 2. With respect to each g-module (X, �) one defines a dominating over
that module Banach algebra A� as the closure of the full subalgebra R (� (g)) ⊆
B (B (∧g, X)) generated by the Lie subalgebra � (g), and the representation � stands
itself instead of a Lie homomorphism � : g→ A�. Undoubtedly, A� � (X, �).

Other examples will be considered later in Section 6 (see also [6]).

Lemma 10. If Ag � (X, �) then Aop
g � (X∗, �∗), where Aop

g is the opposite to Ag
algebra. Moreover, Ag � (XU , �U ) for an ultrafilter U.

Proof. By Corollary 1, the dual (to �) representation �∗ : gop → B (B (∧g, X)∗
)

is
reduced (to within an isomorphism) to the representation �′ : gop → B (B (∧g, X∗)),
�′ (a) = L�∗(a)−RT op(a), extended the dual representation �∗. Then �̂

∗
� (a) = �′ (a) to

within an isomorphism for all a ∈ g, where �̂
∗ : Aop

g → B (B (∧g, X)∗
)
, �̂
∗
(a) = �̂ (a)∗,

is the dual (to �̂) representation. The latter means that Aop
g � (X∗, �∗) by Definition

4. The relation Ag � (XU , �U ) can be proved on the same matter as in [6, Lemma
7.2]. �

Now let Ag � (X, �). It is clear that Ck (g, X) is a complemented Ag-invariant
subspace in B (∧g, X) for each k. We set �̂k (a) = �̂ (a) |Ck(g,X), a ∈ Ag. In particular,
X ∈ Ag-mod (X = C0 (g, X)). We denote the relevant bounded representation Ag →
B (X) by �|Ag , thus �|Ag · � = � and �|Ag (R (im (�))) is dense in �|Ag

(Ag).
Let I be a Lie ideal in g. Then Ck (I, X) is a g-module by the representation

�k,I : g→ B
(
Ck (I, X)

)
, �k,I (u) = L�(u) − RTk,I (u)

(see Section 3.2) and the restriction map Ck (g, X) → Ck (I, X), 
 
→ 
|I (
|I =

|∧kI ), is a g-module homomorphism.

Proposition 4. Let Ag � (X, �). Then Ck (I, X) makes into a Banach Ag-module
extending its g-module structure such that the restriction map Ck (g, X)→ Ck (I, X)

is a morphism in Ag-mod .

Proof. Since g is a nilpotent Lie algebra, the ideal I can be included into a Jordan–
Holder series of ideals having one-dimensional gaps by virtue of Engel theorem [3,
Ch. 1, Section 4]. Therefore, one suffices to prove the assertion for an ideal I of
codimension 1. Take such an ideal I and let e /∈ I . Note that the map

Ck (g, X)→ Ck (I, X)⊕ Ck−1 (I, X) , 
 
→ (
|I , (ik (e) 
) |I ) ,

implements a topological isomorphism in BS due to [6, Lemma 6.3]. If we identify
Ck (g, X) with the direct sum Ck (I, X) ⊕ Ck−1 (I, X) by means of the isomorphism
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then the restriction map Ck (g, X) → Ck (I, X) would be the projection onto first
subspace. Fix a ∈ g. The operator �k (a) has the following matrix form

(
�k,I (a) 0

Gk ([e, a]) �k−1,I (a)

)
(4.1)

with respect to the decomposition, where

Gk (b) : Ck (I, X)→ Ck−1 (I, X) , Gk (b) (
|I ) = (ik (b) 
) |I ,


 ∈ Ck (g, X), b ∈ I . Indeed, if A is the matrix (4.1) then using (3.5), we deduce

A
=A (
|I , (ik (e) 
) |I ) =
(
�k,I (a) (
|I ) , Gk ([e, a]) (
|I )+ �k−1,I (a) (ik (e) 
) |I

)
= ((�k (a) 
) |I , (ik ([e, a]) 
+ �k−1 (a) ik (e) 
) |I )
= ((�k (a) 
) |I , (ik (e) �k (a) 
) |I )
= �k (a) 
.

Now let us introduce the following operators

Dk (a) =
(

�k,I (a) 0
0 �k−1,I (a)

)
, Nk (b) =

(
0 0

Gk (b) 0

)
,

where a ∈ g, b ∈ I . Using (3.5) again, we infer that [Dk (a) , Nk (b)] = Nk ([a, b]).
Moreover, [Dk (a1) , Dk (a2)] = Dk ([a1, a2]) and Nk (b1) Nk (b2) = 0 for all ai ∈ g
and bi ∈ I , i = 1, 2. It follows that the Lie subalgebra E ⊆ B (Ck (I, X)

)
generated

by these operators is a finite-dimensional nilpotent Lie algebra. By Lemma 3, the
closure B of the full subalgebra R (E) ⊆ B (Ck (I, X)

)
generated by E is commutative

modulo its radical RadB. Then Nk (b) ∈ RadB, b ∈ I , and Rg,Dk
⊆ Rg,�. Moreover,

�̂k (r (g))− r (Dk (g)) ∈ RadB, r (g) ∈ Rg,Dk
, where g = im (�). Taking into account

that B is a full subalgebra, we deduce that

sp (r (Dk (g))) = spB (r (Dk (g))) = spB

(̂
�k (r (g))

)
= sp

(̂
�k (r (g))

)
for all r (g) ∈ Rg,Dk

. By Lemma 4, Rg,Dk
= Rg,� and

�̂k (r (g)) =
(

r
(
�k,I (g)

)
0

∗ r
(
�k−1,I (g)

) )
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for all r (g) ∈ Rg,�. It follows that Ck (I, X) is invariant under �̂k (r (g)) and

(̂
�k (r (g)) 


)
|I = r

(
�k,I (g)

)
(
|I ) ,


 ∈ Ck (g, X). But, �̂k (im (̂�)) is dense in �̂k

(Ag) (see Definition 4), therefore
Ck (I, X) is a Ag-submodule and the restriction map Ck (g, X) → Ck (I, X) is a
Ag-module homomorphism. �

Let �̂k,I : Ag → B (Ck (I, X)
)

be a bounded representation defining Ag-module
structure on Ck (I, X) suggested in Proposition 4. Then �̂k,I · � = �k,I and B (∧I, X)

makes into a Banach Ag-module by the representation �̂I = ⊕k∈Z+ �̂k,I .

Corollary 2. Let Ag � (X, �) and let F be a normed Lie subalgebra in Ag. Then

�
(̂
�k|F

)
⊆ �

(
�|Ag |F

)
, � ∈ S, k ∈ N. In particular, �

(̂
�|F
)
= �

(
�|Ag |F

)
for all

� ∈ S.

Proof. One suffices to prove that �
(̂
�k,I |F

)
⊆ �

(
�|Ag |F

)
for all ideals I ⊆ g. As in

the proof of Lemma 8.5 from [6], we proceed by induction on the pair (k, dim (I )).
Take an ideal J ⊂ I such that dim (I/J ) = 1 and

[
g, I
] ⊆ J . We have an admissible

(C-split) sequence 0 → Ck−1 (J, X) −→ Ck (I, X) −→ Ck (J, X) → 0 of Banach
Ag-modules by virtue of Proposition 4, and this in turn associates an exact sequence

of � (F)-Banach complexes 0→ C
(̂
�k−1,J |F

)
−→ C

(̂
�k,I |F

)
−→ C

(̂
�k,J |F

)
→ 0. It

follows that �
(̂
�k,I |F

)
⊆ �

(̂
�k−1,J |F

)
∪�
(̂
�k,J |F

)
by [6, Corollary 3.5]. By induction

hypothesis, �
(̂
�k−1,J |F

)
∪�
(̂
�k,J |F

)
⊆ �

(
�|Ag |F

)
, therefore �

(̂
�k,I |F

)
⊆ �

(
�|Ag |F

)
.

Finally, �
(̂
�|F
)
= �

(
⊕k∈Z+ �̂k|F

)
=⋃k∈Z+ �

(̂
�k|F

)
= �

(
�|Ag |F

)
. �

Corollary 3. Let Ag � (X, �). Then

d (�) �̂ (a) = �̂ (a) d (�) , sp
(̂
� (a)

)
= sp

(
�|Ag (a)

)
for all a ∈ Ag, where d (�) is the differential of the complex C• (�− �), � ∈ � (g). In
particular, C• (�− �) ∈ Ag-mod .

Proof. By Definition 4, im
(̂
�
)
⊆ A�, where A� = R (� (g)) (see Example 2). More-

over, using (3.3), we conclude that d (�) �� (a) = �� (a) d (�) for all a ∈ g, where
�� (a) = L(�−�)(a) − RT (a). Note that �� (a) = � (a) − � (a), whence d (�) � (a) =
� (a) d (�). The latter obviously implies that d (�) T = T d (�) for all T ∈ A�.
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To prove the equality sp
(̂
� (a)

)
= sp

(
�|Ag (a)

)
, one suffices to set F = Ca and

� = �t in Corollary 2. �

Corollary 4. Let (X, �) be a Banach g-module. Then Rg,� = Rg,�.

Proof. By definition, � = ⊕k∈Z+�k and �0 = �. It follows that Rg,� ⊆ Rg,�. Further, if
A� is the closed full subalgebra in B (B (∧g, X)) generated by � (g), then A� � (X, �)

(see Example 2). By Corollary 3, sp (r (� (g))) = sp (r (� (g))) for all r (g) ∈ Rg,�. It
remains to use Lemma 4. �

Now let Ag � (X, �), F a normed Lie subalgebra in Ag and let F̂ be the norm-
completion of F. Let us introduce a bicomplex (as in [6]) connecting parametrized
Banach space complexes C• (�) and C• (�|Ag |F

)
. The following diagram

...
�� ↑

· · · ��→ Cs
(
F̂, Ck (g, X)

) ��→ · · ·
�� ↑

...

is commutative, where �� (�) = dk (�) · �, � ∈ Cs
(
F̂, Ck (g, X)

)
(dk (�) is the

differential of the complex C• (�− �)) and �� is the differential of C•
(̂
�k|F − �

)
(see Corollary 3) Thus we deal with a parametrized Banach space bicomplex B�,� (g,F,

X
)
, � ∈ � (g), � ∈ � (F), with rows B

(
∧sF̂, C• (�− �)

)
, s ∈ Z+, and columns

C•
(̂
�k|F − �

)
, k ∈ Z+, for which we use the denotation B (g,F, X). The total com-

plex of B�,� (g,F, X) is denoted by Tot�,� (g,F, X). Then

Tot (g,F, X) = {Tot�,� (g,F, X) : (�, �) ∈ � (g)× � (F)
}

is a parametrized Banach space complex and their Slodkowski spectra are denoted by
� (g,F, X), � ∈ S.

Proposition 5. Let Ag � (X, �), F a normed Lie subalgebra in Ag, U an ultrafilter
and let �̃ = �|Ag . If F̂ ∈ Proj then parametrized Banach space complexes C• (�U) and
C• (̃�U|F) are �-spectrally connected by means of the � (g)×� (F)-Banach bicomplex
B (g,F, XU).

Proof. Note that Ag � (XU, �U) by Lemma 10. Let �̂U : Ag→ B (B (∧g, XU)) be the
representation extending �U. Since C• (�U) ∈ Ag-mod, it follows that B (g,F, XU) is
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a � (g)× � (F)-Banach bicomplex. Further,

�
(
C•
(̂
�U|F

))
=
⋃

k∈Z+
�
(̂
�kU|F

)
⊆ � (̃�U|F) , � ∈ S�,

by virtue of Corollary 2. Moreover,

⋃
s∈Z+

�
(
B
(
∧sF̂, C• (�U)

))
⊆ �

(C• (�U)
)
, � ∈ S�,

by Lemma 2 and Theorem 1(a). It follows that the Banach space complexes
C• (�U) and C• (̃�U|F) are �-spectrally connected (see Section 2.2) by means of
B (g,F, XU). �

Remark 2. One can prove the chain version (using the chain complex C• (�U)) of this
result replacing the requirement F̂ ∈ Proj with F̂ ∈ Flat and using Theorem 1(a).

4.2. The subset of splitting over g-module elements

The splitting elements over a g-module play a fundamental role on the backward
spectral mapping property.

Let (X, �) be a Banach g-module. As follows from (3.4), � (u)−� (u) = d (�) i (u)+
i (u) d (�) for all u ∈ g, where � ∈ � (g), d (�) ∈ B (B (∧g, X)) is the differential of
the complex C• (�− �) and i (u) ∈ B (B (∧g, X)) is the homotopy operator induced
by u. The latter relation can be enlarged to all rational functions acting on X by the
following way.

Proposition 6. Let Ag � (X, �), � : Ag → C a character and let a be a rational
function in Ag acting on X. There exists an operator i� (a) ∈ B (B (∧g, X)) such that

�̂ (a)− � (a) = d (� · �) i� (a)+ i� (a) d (� · �) .

Moreover, if � ∈ �t (�) then assignment �̃ : R (� (g))→ C, r (� (g)) 
→ r (� (g)), defines
a character �̃ ∈ Spec (A�). In particular, �̂ (a) − �|Ag (a) = d (�) i� (a) + i� (a) d (�),
where �|Ag = �̃ · �̂ ∈ Spec

(Ag) and i� (a) ∈ B (B (∧g, X)).

Proof. To prove the first equality, one suffices to proceed by induction on the order of
rational function a and use (3.4) and (3.3). Take � ∈ �t (�). On the same ground as in
[6, Lemma 8.3], one can prove that r (� (g)) ∈ sp

(
�|Agr (g)

)
for all r (g) ∈ Rg,�, where

r (g) = �̂ (r (g)). Thus Rg,� ⊆ Rg,�. If r1 (� (g)) = r2 (� (g)) for some r1 (g), r2 (g) ∈
Rg,�, then (r1 − r2) (� (g)) ∈ sp

(
�|Ag (r1 (g)− r2 (g))

) = sp ((r1 − r2) (� (g))) = {0}
by virtue of Corollary 3, whence the assignment �̃ : R (� (g)) → C, r (� (g)) 
→
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r (� (g)), is well defined. Moreover, �̃ is continuous, for �̃ (r (� (g))) ∈ sp (r (� (g))).
The rest is clear. �

Remark 3. Note that i� (a) = ∑k
s=1 �̂ (a1 · · · as−1) i (as) � (as+1 · · · ak) whenever a =

a1 · · · ak , ai = � (ui), ui ∈ g, i (as) ∈ B (B (∧g, X)) is the homotopy operator. The
latter immediate from (3.3) and (3.4).

Corollary 5. The assignment �t (�)→ Spec
(Ag), � 
→ �|Ag , is a continuous mapping.

Proof. Fix a ∈ Ag. We have to prove that the function fa : �t (�) → C, fa (�) =
�|Ag (a), is continuous. If a = �̂ (r (g)) for some r (g) ∈ Rg,�, then fa is reduced to a
usual rational function � 
→ r (� (g)) by virtue of Proposition 6. Therefore fa is contin-
uous. In general case, �̂ (a) = limk �̂ (ak) of some sequence ak = �̂ (rk (g)), {rk (g)} ⊆
Rg,�, by Definition 4. Then fa (�) = �̃

(̂
� (a)

)
= limk �̃

(̂
� (ak)

)
= limk �|Ag (ak) =

limk fk (�) for each point � ∈ �t (�), where fk ∈ C (�t (�)), fk = fak
, k ∈ N. Moreover,

bearing in mind that the norm of all characters (in particular, �̃, � ∈ �t (�)) of a Banach
algebra are at most one, we infer that

sup
�∈�t(�)

|fa (�)− fk (�)| = sup
�∈�t(�)

∣∣∣̃� (̂� (a)− �̂ (ak)
)∣∣∣ � sup

�∈�t(�)

∥∥∥̃�∥∥∥ ∥∥∥̂� (a)− �̂ (ak)

∥∥∥
�
∥∥∥̂� (a)− �̂ (ak)

∥∥∥→ 0, n→∞.

Thus fa as a uniform limit of the sequence {fk} of continuous functions on the compact
space �t (�) [1, Ch.4, Section 25] is turning into a continuous mapping, that is, fa ∈
C (�t (�)). �

The image of a Slodkowski spectrum � (�), � ∈ S, under the mapping from Corollary
5 is denoted by � (�) |Ag , thus � (�) |Ag ⊆ Spec

(Ag).
Definition 5. Let Ag � (X, �). An element a ∈ Ag is said to be splitting over g-
module X if for each � ∈ �t (�) there exists n ∈ N (called splitting power with respect
to �) and an operator in,� (a) ∈ B (B (∧g, X)) such that

(̂
� (a)− �|Ag (a)

)n = d (�) in,� (a)+ in,� (a) d (�) .

An element a ∈ Ag is said to be weak splitting over g-module X if for each � ∈ �t (�)

the actions of �̂ (a)−�|Ag (a) on the cohomologies HkC• (�− �), k ∈ Z+ (see Corollary
3), are nilpotent. The set of all (resp., weak) splitting over g-module X elements is
denoted by Ag (�) (resp., Ag 〈�〉).

Obviously, Ag (�) ⊆ Ag 〈�〉, and im (̂�) ⊆ Ag (�) by virtue of Proposition 6. More-
over, all rational functions have splitting powers equal 1 with respect to all characters �
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taken from �t (�). Let us note that a subset in Ag (�) of those elements having splitting
powers equal 1 with respect to all � ∈ �t (�) is a subalgebra in Ag containing im (̂�).
Indeed, for a such couple a, b ∈ Ag (�), we have

�̂ (ab)− �|Ag (ab)= �̂ (a)
(̂
� (b)− �|Ag (b)

)
+ �|Ag (b)

(̂
� (a)− �|Ag (a)

)
= d (�)

(̂
� (a) i1,� (b)+ �|Ag (b) i1,� (a)

)
+
(̂
� (a) i1,� (b)+ �|Ag (b) i1,� (a)

)
d (�)

by virtue of Corollary 3. It follows that the splitting power of ab equals 1.
Later in Section 6, we shall consider various examples of dominating algebras. We

prove that all of them are comprised by splitting elements which are automatically weak
splitting ones as confirmed above. We have no example of a weak splitting element
which is not splitting one. It seems that they would be found in a complexioned
versions of the considered examples, for instance assuming D to be arbitrary (not
necessary Stein) domain in Section 6.4. Meanwhile, one might confirm that the weak
splitting elements play key role to have more generalized finite-dimensional spectral
mapping theorem (see below Theorem 6).

Now we investigate a stability property of splitting elements under homomorphisms.

Lemma 11. Let � : a→ b be an epimorphism of finite-dimensional Lie algebras, (X, �)

a Banach b-module and let P be an associative subalgebra in B (B (∧a, X)) such
that for each G ∈ P there corresponds G� ∈ B (B (∧b, X)) such that G (
 · ∧�) =
G� (
) · ∧� for all 
 ∈ B (∧b, X), where ∧� ∈ B (∧a,∧b) is the exterior power
of �. Then correspondence P → B (B (∧b, X)), G 
→ G�, is a bounded algebra
homomorphism.

Proof. Since ∧� is a surjective map, it follows that 
 · ∧� = 
′ · ∧� iff 
 = 
′
for some 
, 
′ ∈ B (∧b, X). Hence, if G� (
) · ∧� = G (
 · ∧�) = G′� (
) · ∧� for
some G�, G′� ∈ B (B (∧b, X)), and for all 
 ∈ B (∧b, X), then G� = G′�. Thus we
have a well-defined linear map G 
→ G�. Moreover, if G, G′ ∈ P , then

(
G�G

′
�
)
(
) ·

∧� = G�
(
G′� (
)

) · ∧� = G
(
G′� (
) · ∧�

) = G
(
G′ (
 · ∧�)

) = (
GG′

)
(
 · ∧�). It

follows that
(
GG′

)
� = G�G

′
�, that is, the map P → B (B (∧b, X)), G 
→ G�, is

an algebra homomorphism. It remains to prove that this homomorphism is bounded.
Since ∧b is the quotient (normed) space of ∧a, it follows that

∥∥G� (
)
(
v
)∥∥ =∥∥G� (
)

(
(∧�)

(
u
))∥∥ = ∥∥(G� (
) · ∧�)

(
u
)∥∥ � ‖G (
 · ∧�)‖ ∥∥u∥∥, where v = (∧�)

(
u
)
,

that is, ‖G� (
)‖ � ‖G (
 · ∧�)‖. Then ‖G� (
)‖ � ‖G‖ ‖
‖ ‖∧�‖ for all 
. Finally,
‖G�‖ � ‖G‖ ‖∧�‖, so, the map G 
→ G� is bounded. �

Lemma 12. Let � : g → h be an epimorphism of finite-dimensional nilpotent Lie
algebras, (X, �) a Banach b-module, � = � · �, and let �� : g → B (B (∧g, X)) and
�� : h → B (B (∧h, X)) be the Lie representations induced by modules (X, �) and
(X, �), respectively. There exists a bounded algebra homomorphism �̂ : A�� → A��
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such that �̂ (�� (u)) = �� (� (u)) for all u ∈ g, where A�� � (X, �) and A��
� (X, �)

are the dominating algebras (see Example 2).

Proof. Let u ∈ g. Since � is a Lie homomorphism, it follows that ∧� · Tg (u) =
Th (� (u)) · ∧�, where Tg (u) ∈ B (∧g) (resp., Th (v) ∈ B (∧h), v ∈ h) is the operator
extending ad (u) (resp., ad (v)). Then

�� (u) (
 · ∧�)= (L�(u) − RTg(u)

)
(
 · ∧�) = � (� (u)) · 
 · ∧�− 
 · Th (� (u)) · ∧�

= ((L�(�(u)) − RTh(�(u))

)


) · ∧� = �� (� (u)) (
) · ∧�,


 ∈ B (∧h, X). Further, note that one uniquely defines a map �̃ : Rg,� → Rh,�

extending � such that �̂ · �̃ = �̂, by virtue of Lemma 5. Moreover, Rg,�� = Rg,� and
Rh,��

= Rh,� due to Corollary 4. Let us prove that

r (�� (g)) (
 · ∧�) = r̃
(
�� (h)

)
(
) · ∧� (4.2)

for all rational functions r (�� (g)) ∈ A�� (here r (g) ∈ Rg,�� ), where r̃ (h) = �̃ (r (g)).
At first, note that sp (r (�� (g))) = sp

(̃
r
(
�� (h)

))
. Indeed, using Corollary 3, we infer

that sp (a) = sp
(
�|A�� (a)

)
, a ∈ A�� , and sp (b) = sp

(
�|A�� (b)

)
, b ∈ A��

. Then

sp (r (�� (g)))= sp
(
�|A�� r (�� (g))

)
= sp (r (� (g))) = sp (̂� (r (g))) = sp

(̂
� (̃r (h))

)
= sp (̃r (� (h))) = sp

(
�|A�� r̃

(
�� (h)

)) = sp
(̃
r
(
�� (h)

))
.

Further, since �� (u) (
 · ∧�) = �� (� (u)) (
)·∧�, u ∈ g, it follows that (4.2) is valid for
all polynomials r (g). Moreover, using the equality for spectra of operators participating
in both parts of (4.2), we deduce that if (4.2) is true for some invertible rational function
r (g) ∈ Rg,�� then it is also true for its inverse r−1 (g):


 · ∧� =
(̃
r
(
�� (h)

)
r̃−1 (�� (h)

)


)
· ∧� = r (�� (g))

((̃
r−1 (�� (h)

)


)
· ∧�

)
,

which implies that r−1 (�� (g)) (
 · ∧�) = r̃−1
(
�� (h)

)
(
) · ∧�. By induction on the

order of rational functions (see Section 2.3), we establish (4.2) for all r (g) ∈ Rg,�� .
Now we apply Lemma 11 for the subalgebra P = R (�� (g)) ⊆ A�� . There exists a

bounded algebra homomorphism � : P → A�� such that � (r (�� (g))) = r̃
(
�� (h)

)
. In

particular, � (�� (u)) = �� (� (u)) for all u ∈ g. Its extension �̂ up to the closure A�� of
P is the required algebra homomorphism. �

Theorem 4. Let � : g → h be an epimorphism of finite-dimensional nilpotent Lie
algebras, (X, �) a Banach b-module and let � = � · �. Then �̂

(A�� 〈�〉
) ⊆ A��

〈�〉,
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where �̂ : A�� → A��
is the bounded algebra homomorphism such that �̂ (�� (u)) =

�� (� (u)), u ∈ g.

Proof. At first, note that the homomorphism �̂ exists and it is unique due to Lemma
12. Let G = ker (�). Using the argument carried out in the proof of Proposition 3,
one can reduce assertion to the case

[
G, g

] = {0}. Indeed, if
[
G, g

] �= {0} then �
splits into the product �1�2 · · · �s+1 of Lie epimorphisms �i : gi → gi−1 such that[
ker (�i ) , gi

] = {0}, where g(s+1) = {0}, gi = g/Gi , G0 = G, Gi =
[
g, Gi−1

]
,

i�1. There exists a bounded algebra homomorphism �̂i : Ai → Ai−1 extending �i

by virtue of Lemma 12, where Ai = A��i
is the dominating over gi-module

(
X, �i

)
from Example 2, where �i = ��1�2 · · · �i . Moreover, �̂ = �̂1 · · · �̂s+1 by Lemma 12.
If the assertion has been proved for the case

[
G, g

] = {0} then we would obtain that
�̂
(A�� 〈�〉

) = �̂
(As+1

〈
�s+1

〉) ⊆ �̂1 · · · �̂s

(As

〈
�s

〉) ⊆ · · · ⊆ �̂1
(A1

〈
�1
〉) ⊆ A��

〈�〉.
So, assume that

[
G, g

] = {0} and take a ∈ A�� 〈�〉. By Definition 5, we have to prove

that the operator �̂ (a) − �|A�� (̂� (a)) is nilpotent on all cohomologies HkC• (�− �),
for each � ∈ �t (�). By Proposition 3, � = � · � ∈ �t (�). Moreover, �|A�� (r (�� (g))) =
r (� (g)), r (g) ∈ Rg,� = Rg,�� , and �|A��

(
r
(
�� (h)

)) = r (� (h)), r (g) ∈ Rh,� = Rh,��
,

due to Proposition 6. It follows that Rg,� ⊆ Rg,� and Rh,� ⊆ Rh,�. By Lemma 4,

the Lie epimorphism � has unique extension �̃ : Rg,� → Rh,� such that �̂ · �̃ = �̂,
moreover, �̃

(Rg,�
) ⊆ Rh,� and �̂ · �̃ = �̂. Then

�|A�� (r (�� (g)))= r (� (g)) = �̂ (r (g)) = �̂ (̃� (r (g))) = �̂ (̃r (h)) = r̃ (� (h))

= �|A��
(̃
r
(
�� (h)

)) = �|A�� · �̂ (r (�� (g))) ,

where r (g) ∈ Rg,�, r̃ (h) = �̃ (r (g)). Thus �|A�� (b) = �|A�� · �̂ (b) for all b ∈
R (�� (g)) ⊆ A�� . Using the continuity of �̂ (Lemma 12), we infer that �|A�� = �|A�� ·̂�.

It follows that �̂ (a) − �|A�� (̂� (a)) = �̂
(
a − �|A�� (a)

)
, whence one suffices to prove

that if actions on the cohomologies HkC• (�) of a certain a ∈ A�� 〈�〉 are nilpotent
then actions on the cohomologies HkC• (�) of �̂ (a) are also nilpotent. To prove that,
we use the exact complexes

0→ B (Gs, C
• (�)

) �X
s−→C•s (�)

	X−→C•s+1 (�)→ 0 (4.3)

of g-modules suggested in Lemma 8, where s ∈ Z+. With A�� � (X, �) (Exam-
ple 2) in mind and taking into account that C•s (�) is a subcomplex of C• (�), we
infer that C•s (�) ∈ A�� -mod by virtue of Proposition 2 and Corollary 3. As fol-
lows from Proposition 2 again, that 	X is a A�� -morphism of complexes. Moreover,
B (Gs, C

• (�)) ∈ A��
-mod furnished A��

-module structure by the left regular rep-

resentation (see Corollary 3), whence B (Gs, C
• (�)) ∈ A�� -mod along the algebra

homomorphism �̂ : A�� → A��
suggested in Lemma 12. Actually, (4.3) is a short
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exact sequence of A�� -module complexes. Indeed, �X
s,k · L̂�(b) = b · �X

s,k , b ∈ �� (g), by
Lemmas 8, 12. It follows that the latter equality is valid for all b ∈ A�� , that is, (4.3)
is a sequence of A�� -module complexes. As a corollary of this reasoning, we conclude
that the following diagram

· · · → Hk−2
s+1 → B

(
Gs, H

k
�

)
→ Hk

s → Hk−1
s+1 → · · ·

↑ a ↑ L̂�(a) ↑ a ↑ a

· · · → Hk−2
s+1 → B

(
Gs, H

k
�

)
→ Hk

s → Hk−1
s+1 → · · ·

(4.4)

is commutative, where the first (and second) row is the long cohomology sequence
associated by the short exact sequence (4.3) of complexes, the columns are the operators
on cohomologies induced by a ∈ A�� 〈�〉 and �̂ (a). We have to prove that all induced

operators �̂ (a) ∈ B
(
Hk

�

)
, k ∈ Z+, are nilpotent. We proceed by induction on k. Bearing

in mind that C•0 (�) = C• (�), the assertion for k = 0 directly follows from (4.4) by
setting s = 0 (here H 0

� = H 0
0 = H 0

� ).

Now let k > 0. By induction hypothesis, all operators �̂ (a) ∈ B
(
Hi

�

)
, i�k− 1, are

nilpotent. Applying Lemma 1 to the left side of the commutative diagram (4.4) for s =
0, we see that one suffices to prove the nilpotency of the operator a ∈ B

(
Hk−2

1

)
. By

induction on the pair (i, j), let us prove that all operators a ∈ B
(
H

j
d−i

)
, 0� i�d − 1,

0�j �k − 2, are nilpotent, where d = dim (G). Note that C• (�) = B (Gd, C• (�)) =
C•d (�) (to within an isomorphism in A�� -mod) by virtue of (4.3), whence all a ∈
B (Ht

d

)
, 0� t �k−1, are nilpotent operators. Fix (i, j), i > 0. By induction hypothesis,

the operators a ∈ B
(
H

j−1
d−i+1

)
and �̂ (a) ∈ B

(
H

j
d

)
(Hj

d = H
j

� ) are nilpotent. Then

L̂�(a) ∈ B
(
B
(
Gd−i , H

j

�

))
is also nilpotent, and using the right side of the commutative

diagram (4.4) for s = d− i, and Lemma 1, we deduce that a ∈ B
(
H

j
d−i

)
is a nilpotent

operator. In particular, a ∈ B
(
Hk−2

1

)
is nilpotent. Therefore �̂ (a) ∈ B

(
Hk

�

)
is a

nilpotent operator, too. �

Remark 4. Let � : g → h be an epimorphism of nilpotent Lie algebras, (X, �) a
Banach b-module, � = � · � and let Ag � (X, �). Then �̂̂��

(Ag 〈�〉) ⊆ A��
〈�〉. Indeed,

�̂�
(Ag 〈�〉) ⊆ A�� 〈�〉 by Definition 5, and �̂

(A�� 〈�〉
) ⊆ A��

〈�〉 by Theorem 4.

4.3. The forward spectral mapping property

Now let f : � (g)→ � (F) be arbitrary continuous extension of the continuous map
�t (�)→ � (F), � 
→ �|Ag |F from Corollary 5.
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Lemma 13. Let Ag � (X, �), F a normed Lie subalgebra, U an ultrafilter and let
�̃ = �|Ag . If F̂ ∈ Proj then f is a prespectral mapping with respect to the bicomplex
B (g,F, XU) connecting C• (�U) and C• (̃�U|F).

Proof. At first, note that the complexes C• (�U) and C• (̃�U|F) are �-spectrally con-
nected by means of the bicomplex B (g,F, XU) due to Proposition 5. Now take
� ∈ � (g). If � /∈ �t (�) then noting is left to prove (see Definition 2). So, as-
sume that HmC• (�U − �) is a nontrivial Banach space, � = f (�), and let �∼U� :
HmC• (�U − �) → HmB

(
F̂, C• (�U − �)

)
be the differential of the mth vertical co-

homology complex of the bicomplex B�,� (g,F, XU). Using the same argument as in
the proof of Theorem 8.6 from [6], we obtain that �∼U� = 0, thereby f is a prespectral
mapping. �

Theorem 5. Let Ag � (X, �), F a normed Lie subalgebra in Ag and let � ∈ S�. If
F̂ ∈ Proj then � (�) |Ag |F ⊆ �u

(
�|Ag |F

)
.

Proof. Let U be an ultrafilter and let �̃ = �|Ag . By (3.2), C• (�)U = C• (�U). More-
over, the parametrized Banach space complexes C• (�U) and C• (̃�U|F) are �-spectrally
connected by means of � (g) × � (F)-Banach bicomplex B (g,F, XU) due to Propo-
sition 5. Now let f : � (g) → � (F) be arbitrary continuous extension of the map
�t (�) → � (F), � 
→ �|Ag |F. Then f is a prespectral mapping with respect to the
bicomplex B (g,F, XU) connecting C• (�)U and C• (̃�U|F) by Lemma 13. By The-
orem 2, f (� (�)) = f (� (C• (�))) ⊆ � (C• (̃�U|F)) = �

(C• ((̃�|F)U
)) ⊆ �u (̃�|F)

(see Definition 3). �

Corollary 6. Let Ag � (X, �) and let F be a finite-dimensional Lie subalgebra in Ag.
Then � (�) |Ag |F ⊆ �

(
�|Ag |F

)
for all � ∈ S� ∪S�.

Proof. Taking into account that F ∈ Proj , the inclusion for spectra � ∈ S� immedi-
ately follows from (3.2) and Theorem 5.

Now fix � = ��,k ∈ S�. By Lemma 10, Aop
g � (X∗, �∗). Using (3.1) and Theorem

5, we obtain that

�(�)|Ag |F = ��,k (�)|Ag |F=��,k
(
�∗
)|Aop

g |Fop⊆��,k
u

(
�∗|Aop

g |Fop

)
=��,k

((
�|Ag |F

)∗)
= ��,k

(
�|Ag |F

)
= �

(
�|Ag |F

)
,

that is, � (�) |Ag |F ⊆ �
(
�|Ag |F

)
. �

Corollary 7. Let Ag � (X, �) and let F be a normed Lie subalgebra in Ag. If F̂ ∈
Proj then ��,k (�) |Ag |F ⊆ ��,k

u

((
�|Ag |F

)∗)
, k ∈ Z+. In particular, ��,k (�) |Ag |F ⊆

�u
�,k

(
�|Ag |F

)
whenever X is superreflexive [16].
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Proof. Using Lemma 10 and Theorem 5, we infer that

��,k (�) |Ag |F = ��,k
(
�∗
) |Aop

g |Fop ⊆ ��,k
u

(
�∗
)
,

where � = �|Ag |F. If X is superreflexive then (X∗)U = (XU)∗ for a countably in-
complete ultrafilter U [16, Corollary 7.2]. In particular, (�∗)U =

(
�U
)∗ and ��,k

u (�∗) =⋃
U ��,k

(
(�∗)U

) =⋃U ��,k
((

�U
)∗) =⋃U ��,k

(
�U
) = �u

�,k
(�) by Definition 3. �

4.4. The backward spectral mapping property

Now we investigate the problem whether or not a continuous extension f : � (g)→
� (F) of the map �t (�)→ � (F), � 
→ �|Ag |F, is a spectral mapping with respect to
the � (g) × � (F)-Banach bicomplex B (g,F, XU) connecting the complexes C• (�U)

and C• (̃�U|F), where �̃ = �|Ag .
Fix m ∈ Z+ and let �� = �− �, � ∈ � (g). Then

0→ HmC• (��)
�∼�→HmC1

(
F̂, C• (��)

)
→ · · · → HmCs

(
F̂, C• (��)

) �∼�→· · · (4.5)

is the mth vertical cohomology complex of the bicomplex B�,� (g,F, X). By Corollary
3, ker dm (�) is a closed Ag (in particular, F)-submodule in Cm (g, X), where dm (�) is

the differential of (0th row) the complex C• (��). The complex C•
(̂
�|F − �| ker dm (�)

)
generated by the F-module

(
ker dm (�) , �̂|F − �

)
is a Banach space complex of F-

modules and it is a subcomplex of the mth column of B�,� (g,F, X). The F-module
structure on this complex is defined by the �-type representation (see Section 3.2)

�s,� : F→ B (B (∧sF, ker dm (�)
))

, �s,� (a) = L(̂
�−�

)
(a)
− RTs(a),

extending �̂|F − �, and let Is (a) (a ∈ F) be the homotopy operator on the Banach

space complex C•
(̂
�|F − �| ker dm (�)

)
. Using Corollary 3, one can easily verify that

L�̂(a)
�m−1
� = �m−1

� L�̂(a)
, RTs(a)�

m−1
� = �m−1

� RTs(a)

and Is (a) �m−1
� = �m−1

� Is (a), where �m−1
� is the row differential of B�,� (g,F, X). In

particular, �s,� (a) �m−1
� = �m−1

� �s,� (a) and the image im
(
�m−1
�

)
is invariant under

all operators L�̂(a)
, RTs(a), �s,� (a) and Is (a), a ∈ F, thereby they induce operators

on the cohomologies

L∼̂
�(a)

, �∼s,� (a) , R∼Ts(a) ∈ B (HmCs
(
F, C• (��)

))
,

I∼s (a) ∈ B
(
HmCs

(
F, C• (��)

)
, HmCs−1 (F, C• (��)

))
,
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by the canonical way. Using (3.3) and (3.4) for the complex C•
(̂
�|F − �| ker dm (�)

)
and by passing to the cohomologies, we obtain that

�∼� �∼s,� (a) = �∼s,� (a) �∼� , (4.6)

�∼� I∼s (a)+ I∼s+1 (a) �∼� = �∼s,� (a) . (4.7)

The following lemma describes the operator �∼s,� (a) when a ∈ Ag (�).

Lemma 14. Assume that a ∈ F ∩Ag (�), or a ∈ F ∩Ag 〈�〉 and dim (F) <∞. Then
�∼s,� (a) = �|Ag (a)−� (a)−R∼Ts(a)+N , where N is a nilpotent operator. In particular,

0 /∈ sp
(
�∼s,� (a)

)
whenever sp (ad (a) |F) = {0} and �|Ag (a) �= � (a).

Proof. By definition of �∼s,� (a), one suffices to prove that N = L∼̂
�(a)
− �|Ag (a) is a

nilpotent operator on the cohomology HmCs (F, C• (��)). Take � ∈ Cs (F, ker dm (�)).

By Definition 5,
(̂
� (a)− �|Ag (a)

)n = dm−1 (�) in,� (a) + in,� (a) dm (�) for a certain

n ∈ N and some operator in,� (a) ∈ B (B (∧g, X)) whenever a ∈ F ∩Ag (�). Then

(
L�̂(a)

− �|Ag (a)
)n

� = dm−1 (�) in,� (a) �+ in,� (a) dm (�) � = �m−1
�

(
Lin,�(a)�

)
,

thereby
(
L∼̂

�(a)
− �|Ag (a)

)n

�∼ =
(
�m−1
�

(
Lin,�(a)�

))∼ = 0. If a ∈ F ∩ Ag 〈�〉 and

dim (F) <∞, then

((
L�̂(a)

− �|Ag (a)
)n

�
) (

u
) = (̂� (a)− �|Ag (a)

)n (
�
(
u
)) ∈ im dm−1 (�)

for all u ∈ ∧sF, and therefore
(
L�̂(a)

− �|Ag (a)
)n

� = dm−1 (�) · � for some � ∈
Cs
(
F, Cm−1 (g, X)

)
. It follows again that

(
L∼̂

�(a)
− �|Ag (a)

)n

�∼ = 0.

Now let us assume that sp (ad (a) |F) = {0} and za = �|Ag (a) − � (a) �= 0. Then

operator of the adjoint representation ad (a) ∈ B
(
F̂
)

is quasinilpotent. It follows that

all Ts (a) ∈ B
(
∧sF̂

)
, s ∈ Z+, are also quasinilpotent by [6, Lemma 6.1]. The lat-

ter involves that sp
(
RTs(a)

) = {0} for all s. But, RTs(a) ∈ B (Cs (F, ker dm (�))) is

a Banach space operator, so, the series Gs (a) = ∑∞k=0

(
z−1
a RTs(a)

)k
converges abso-

lutely in B (Cs (F, ker dm (�))) and �m−1
� Gs (a) = Gs (a) �m−1

� . Moreover, the operator
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G∼s (a) ∈ B (HmCs (F, C• (��))) commutes with N. Indeed,

[
G∼s (a) , N

] = [Gs (a) , L�̂(a)

]∼ = ( ∞∑
k=0

z−1
a

[
Rk

Ts(a), L�̂(a)

])∼
= 0∼.

Note also that z−1
a Gs (a) = (za − RTs(a)

)−1 and z−1
a G∼s (a) =

(
za − R∼Ts(a)

)−1
. Finally,

z−1
a G∼s (a) �∼s,� (a)= z−1

a �∼s,� (a) G∼s (a) = z−1
a G∼s (a)

(
za − R∼Ts(a) +N

)
= 1+ z−1

a G∼s (a) N.

It is clear that 1+ z−1
a G∼s (a) N is invertible and

(
1+ z−1

a G∼s (a) N
)−1 =

n−1∑
k=0

(−1)k
(
z−1
a G∼s (a) N

)k

.

Thus 0 /∈ sp
(
�∼s,� (a)

)
. �

Proposition 7. Let Ag � (X, �) and let S be a subset in Ag (�) (resp., Ag 〈�〉) gen-
erating a quasinilpotent normed (resp., finite-dimensional) Lie subalgebra F ⊆ Ag. If
F̂ ∈ Proj then f : � (g)→ � (F) is a spectral mapping with respect to the bicomplex
B (g,F, XU) connecting C• (�U) and C• (̃�U|F), where �̃ = �|Ag .

Proof. At first, note that if S ⊆ Ag 〈�〉 generates a finite-dimensional Lie subalgebra
F ⊆ Ag then F = F̂ ∈ Proj . We have already proved (see Lemma 13) that f is a
prespectral mapping whenever F̂ ∈ Proj . So, it remains (see Definition 2) to prove that
all vertical cohomology complexes (4.5) of the bicomplex B�,� (g,F, XU) are exact,
whenever f (�) �= �. Note that f (�) = �|Ag and if f (�) �= � then �|Ag (a) �= � (a)

for a certain a ∈ S, because of S is a set of topological Lie generators of F (or F̂).
By assumption, a ∈ Ag (�) (resp., a ∈ Ag 〈�〉) and sp (ad (a) |F) = {0}. Using Lemma
14, we conclude that all operators �∼s,� (a), s ∈ Z+, acting on the vertical cohomology
complexes of the bicomplex B�,� (g,F, XU) are invertible. But, the latter implies that
all vertical cohomology complexes are exact by virtue of (4.6) and (4.7). �

As follows from Proposition 7, to prove the backward spectral mapping property
for normed Lie subalgebras of the dominating algebra one remains to establish the
Projection Property suggested in Theorem 3.

Proposition 8. Let Ag � (X, �), U an ultrafilter and let F be a normed Lie subalgebra
in Ag. If F̂ ∈ Proj then � (g,F, XU) |{0}×F = �

(
�U|Ag |F

)
for all � ∈ S.

The proof is based on the same argument as in [6, Theorem 9.6].
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Theorem 6. Let Ag � (X, �) and let S be a subset in Ag (�) (resp., Ag 〈�〉) generating
a quasinilpotent normed (resp., finite-dimensional) Lie subalgebra F ⊆ Ag. If F̂ ∈ Proj

then

�u

(
�|Ag |F

)
= � (�) |Ag |F, � ∈ S�.

Proof. The inclusion � (�) |Ag |F ⊆ �u

(
�|Ag |F

)
was proved in Theorem 5. The reverse

inclusion follows from Propositions 7, 8, and Theorem 3. �

Corollary 8. Let Ag � (X, �), and let F ⊆ Ag 〈�〉 be a finite-dimensional nilpotent
Lie subalgebra. Then

�
(
�|Ag |F

)
= � (�) |Ag |F, � ∈ S.

Proof. If � ∈ S� then result follows from Theorem 6. To prove the equality for spectra
� = ��,k ∈ S� we use the same argument carried out in the proof of Corollary 6.
Namely, using Lemma 10 and Theorem 6, we obtain that

��,k

(
�|Ag |F

)
= ��,k

((
�|Ag |F

)∗) = ��,k
u

(
�∗|Aop

g |Fop

)
⊆ ��,k

(
�∗
) |Aop

g |Fop = ��,k (�) |Ag |F.

By Corollary 6, ��,k

(
�|Ag |F

) = ��,k (�) |Ag |F.
Finally, note that chain and cochain complexes generated by a representation of a

finite-dimensional nilpotent Lie algebra are isomorphic [13, Proposition 3.1], whence
��,k (�) = ��,k (�) and ��,k (�) = ��,k (�). By assumption, F is a nilpotent Lie subal-
gebra, therefore ��,k

(
�|Ag |F

) = ��,k

(
�|Ag |F

)
and ��,k

(
�|Ag |F

) = ��,k
(
�|Ag |F

)
.

�

Corollary 9. Let Ag � (X, �) and let S be a subset in Ag (�) generating a quasinilpo-
tent normed Lie subalgebra F ⊆ Ag such that F̂ ∈ Proj . Then

��,k (�) |Ag |F = ��,k
u

((
�|Ag |F

)∗)
, k ∈ Z+.

In particular, �u
�,k

(
�|Ag |F

) = ��,k (�) |Ag |F whenever X is superreflexive.

Proof. The inclusion ��,k (�) |Ag |F ⊆ ��,k
u

((
�|Ag |F

)∗)
was proved in Corollary 7. The

reverse inclusion follows from Theorem 6. Namely,

��,k
u

((
�|Ag |F

)∗) = ��,k
u

(
�∗|Aop

g |Fop

)
⊆ ��,k

(
�∗
) |Aop

g |Fop = ��,k (�) |Ag |F.
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If X is superreflexive then

��,k
u

((
�|Ag |F

)∗) = �u
�,k

(
�|Ag |F

)
(see Corollary 7). Therefore ��,k (�) |Ag |F = �u

�,k

(
�|Ag |F

)
. �

Remark 5. To obtain the classical form

f (� (a)) = � (f (a))

of the spectral mapping formulae suggested above one suffices to carry out the reasoning
as in [5].

5. The finite-dimensional spectral mapping theorem for a family of functions
generating solvable Lie subalgebra

In this section, we investigate the spectral mapping theorem for a Lie subalgebras
F ⊆ Ag having finite-dimensional images. Using the Cartan subalgebras we could
restore the Fainshtein version (see [13,14]) of a finite-dimensional spectral mapping
theorem with respect to a more general (than polynomials) functions in noncommuting
variables.

5.1. Cartan–Slodkowski spectra

Let A be a finite-dimensional solvable Lie algebra, (X, �) be a Banach A-module,
H a Cartan subalgebra in A and let A = H ⊕ H+ be the Cartan decomposition of
A with respect to H [1, Ch. 1, Section 5]. One defines the Cartan–Slodkowski (resp.,
Cartan–Taylor) spectra [1, Ch. 4, Section 27], [7], of � as

� (�) = {� ∈ A∗ : �|H ∈ � (�|H) , � (H+) = {0}} , � ∈ S.

It is obvious that � (�) coincides with the spectrum � (�) for a nilpotent Lie algebra A.
If A ⊆ B (X) then we set � (A) = � (∗ idA). One can prove that � (�) ⊆ � (A) and
� (�) does not depend on the choice of a Cartan subalgebra H (see [7]). The family of
all set-valued functions � defined on the class of solvable Lie algebra representations
is denoted by KS.

The following projection property was proved in [1, Ch. 4, Section 27] for the
Cartan–Taylor spectrum and was extended to all Cartan–Slodkowski spectra in [7].

Proposition 9. Let A be a finite-dimensional solvable Lie algebra, and let (X, �) be
a Banach A-module. If L is a Lie subalgebra in A then � (�|L) = � (�) |L for all
� ∈ KS.
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The following assertion is the Cartan–Slodkowski version of the stability property
for the Slodkowski spectra suggested in Proposition 3.

Proposition 10. Let � : A→ B be an epimorphism of finite-dimensional solvable Lie
algebras, and let (X, �) be a B-module. Then � (� · �) = � (�) · � for all � ∈ KS.

Proof. Take � ∈ � (� · �). Then �|H ∈ � (� · �|H) and � (H+) = {0} for a Cartan
subalgebra H ⊆ A. By Proposition 3, �|H = � ·�|H for some � ∈ �

(
�|�(H)

)
. Moreover,

� = �|�(H) for a certain � ∈ � (�) by virtue of Proposition 9. But H+ ⊆
[
A,A

]
,

therefore � · � = �. Thus � (� · �) ⊆ � (�) · �.
Conversely, take � ∈ � (�) and let H ⊆ A be a Cartan subalgebra. Then (� · �) (H+)

⊆ �
(
�
([
A,A

])) = �
([
B,B

]) = {0} and (� · �) |H = �|�(H) · �|H. By Proposition 9,
�|�(H) ∈ �

(
�|�(H)

)
. Bearing in mind that H is a nilpotent Lie algebra, we infer that

� ((� · �) |H) = �
(
�|�(H)

) · �|H due to Proposition 3, whence (� · �) |H ∈ � ((� · �) |H)

and � · � ∈ � (� · �) by its very definition. �

5.2. Spectral mapping theorem

Now let (X, �) be a Banach g-module, h = � (g), � = idh : h → B (X) the iden-
tity representation, Ag � (X, �), and let A�� (resp., A��

) be the full subalgebra in
B (B (∧g, X)) (resp., B (B (∧h, X))) generated by �� (g) (resp., �� (h)). As we noted
in Example 2, A�� � (X, �), A��

� (X, �), and these algebras are connected by the
homomorphism �̂ : A�� → A��

such that �̂ (�� (u)) = �� (� (u)), u ∈ g, by Lemma 12.
One can easily verify that

�|A�� �̂ · �̂� = �|A�� · �̂� = �|Ag (5.1)

and the images im
(
�|A��

)
, im

(
�|A��

)
belong to the full subalgebra A� ⊆ B (X)

generated by h.

Lemma 15. Let Ag � (X, �) and let � ∈ �t (h). There exists �|A� ∈ Spec (A�) ex-

tending � such that �|A� · �|A�� = �|A�� , �|A� · �|A�� = (� · �) |A�� and �|A� · �|Ag =
(� · �) |Ag .

Proof. At first, note that � = � ·� ∈ �t (�) by virtue of Proposition 3. By Proposition 6,
there exists �̃ ∈ Spec

(A��

)
such that �̃ (r (�� (g))) = r (� (h)) for all rational functions

r (g) ∈ Rg,�� . Let us remind that the image of the map �̂ : Rg,�� → B (X) extend-
ing � is the full subalgebra R (h). Moreover, sp (r (�� (g))) = sp

(
�|A�� (r (�� (g)))

) =
sp (r (h)) by Corollary 3. We set �|A� (r (h)) = r (� (h)), r (g) ∈ Rg,� = Rg,�� . To
be correct, note that if r1 (h) = r2 (h) for some r1, r2 ∈ Rg,�, then r1 (� (h)) =
�̃ (r1 (�� (g))) = �̃ ((r1 − r2) (�� (g))) + �̃ (r2 (�� (g))) and �̃ ((r1 − r2) (�� (g))) ∈
sp ((r1 − r2) (�� (g))) ⊆ sp ((r1 − r2) (h)) = {0}, that is, r1 (� (h)) = r2 (� (h)). The
rest is clear. �
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Lemma 16. Let A be a finite-dimensional Lie subalgebra in A��
such that A ⊆

A��
〈�〉. Then A is a solvable Lie algebra and �

(
�|A�� |A

)
= � (h) |A�� |A for all

� ∈ KS.

Proof. By Lemma 3, A��
is commutative modulo its Jacobson radical RadA��

, whence[
A,A

] ⊆ RadA��
. It follows that

[
A,A

]
is a nilpotent Lie algebra, consequently, A is

solvable. Let H be a Cartan subalgebra in A. Then H+ ⊆
[
A,A

]
, therefore � = �|A

iff �|H = �|H for arbitrary � ∈ � (A) and � ∈ Spec(A��
). With A��

� (X, �) in

mind, we deduce that �
(
�|A�� |H

)
= � (h) |A�� |H due to Corollary 8. It follows that

�
(
�|A�� |A

)
= � (h) |A�� |A = � (h) |A�� |A. �

Lemma 17. Let A be a finite-dimensional Lie subalgebra in A��
〈�〉, A0 = �|A�� (A).

Then � (A0) = � (h) |A� |A0 for all � ∈ KS.

Proof. Take � ∈ � (h) = � (h) and y ∈ A0, y = �|A�� (a), a ∈ A. By Lemma

15, �|A� (y) = �|A��|A�� (a) = �|A�� (a) =
(
�|A�� |A

)
(a). But � = �|A�� |A ∈

� (h) |A�� |A. By Lemma 16, � ∈ �
(
�|A�� |A

)
. Moreover, �

(
�|A�� |A

)
= � (A0) ·

�|A�� |A by virtue of Proposition 10. Then � = � · �|A�� |A for some � ∈ � (A0).
Moreover, �|A� (y) = � (a) = � (y), that is, �|A� |A0 = � ∈ � (A0).

Conversely, take � ∈ � (A0). Then � · �|A�� |A ∈ � (A0) · �|A�� |A ⊆ �
(
�|A�� |A

)
,

and by Lemma 16, � ·�|A�� |A = �|A�� |A for a certain � ∈ � (h). Take y = �|A�� |A (a),

a ∈ A. Then � (y) = �
(
�|A�� (a)

)
= �|A�� (a) = �|A�

(
�|A�� (a)

)
= �|A� |A0 (y), that

is, � = �|A� |A0 . �

Theorem 7. Let Ag � (X, �). If F is a Lie subalgebra in Ag 〈�〉 such that �̂ (F) is a
finite-dimensional Lie subalgebra in B (B (∧g, X)), then F� = �|Ag (F) is a solvable
Lie subalgebra and � (F�) = � (� (g)) |A� |F� for all � ∈ KS.

Proof. Let A = �̂
(̂
�� (F)

)
. It is a finite-dimensional Lie subalgebra in A��

, in par-

ticular A is solvable. By Theorem 4, A ⊆ A��
〈�〉 (see also Remark 4). Moreover,

�|A�� (A) = F� by (5.1). It remains to use Lemma 17. �

Corollary 10. Let Ag � (X, �). If F is a finite-dimensional Lie subalgebra in Ag 〈�〉
then F� = �|Ag (F) is solvable and � (F�) = � (� (g)) |A� |F� for all � ∈ KS.
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Note that if dim
(̂
� (F)

)
< ∞ then automatically dim (F�) < ∞. We do not know

whether or not the opposite assertion is valid. Namely, does the finite-dimensionality
of the Lie subalgebra F� ⊆ B (X) imply the finite-dimensionality of the Lie subalgebra
�̂ (F) ⊆ B (B (∧g, X))? This problem arose in Fainshtein’s investigations [13,14], in
the case Ag = U (g) (see Example 1). If g is a commutative Lie algebra then one can

easily verify that the answer is positive. In this case dim
(̂
� (F)

)
= dim (F�). For a

noncommutative nilpotent Lie algebra g the answer is unknown. We could announce
that the answer is also positive for Arens-Michael completions Ag of U (g) whenever
g is a Heisenberg algebra (that is, dim

([
g, g
]) = 1).

6. Applications to noncommutative functional calculi

In this section, we apply spectral mapping results suggested in previous sections to
various noncommutative functional calculi.

6.1. The polynomial algebra U (g)

Let us assume that Ag is the universal enveloping algebra U (g). Then Ag � (X, �)

for each Banach g-module X (see Example 1). Moreover, Ag (�) = Ag 〈�〉 = Ag by
Proposition 6. Using Theorems 6, 7, we obtain the following generalization of the main
result in [13] (see also [14]).

Corollary 11. Let g be a finite-dimensional nilpotent Lie algebra and let F ⊆ U (g)

be a quasinilpotent normed Lie subalgebra. If F̂ ∈ Proj then

�u

(
�|U(g)|F

)
= � (�) |U(g)|F, � ∈ S�.

In particular, if F ⊆ U (g) is a finite-dimensional Lie subalgebra then F is nilpotent
and

� (�) |U(g)|F = �
(
�|U(g)|F

)
, � ∈ S.

Moreover, if P ⊆ U (g) is a Lie subalgebra such that dim
(
�|U(g) (P)

)
< ∞ then

P� = �|U(g) (P) is a solvable Lie subalgebra and

� (P�) = � (� (g)) |P� |P� , � ∈ KS,

where P� is the associative hull of � (g) in B (X).

Note that a finite-dimensional Lie subalgebra in U (g) is automatically nilpotent one
(see [13]).
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6.2. The Banach algebra A (g) of convergent power series

The next example is the Banach enveloping algebra (or the algebra of convergent
power series) of a normed Lie algebra [9, Section 2].

Let us remind necessary facts (for more detailed information see [9, Sections 2, 4]).
Let J be a B–L algebra and let �1 (J) be the �1-direct sum of Banach spaces J⊗̂n,
n ∈ Z+. It is clear that �1 (J) is the �1-norm completion of the tensor algebra T (J),
therefore it is turning into Banach algebra. Let I be a two-sided ideal in T (J) generated
by tensors x ⊗ y − y ⊗ x − [x, y], x, y ∈ J, and let J be its closure in �1 (J). The
Banach enveloping algebra A (J) of B–L algebra J is defined as the quotient algebra
�1 (J) /J . Bearing in mind that U (J) = T (J)/I , one automatically defines a canonical
algebra homomorphism � : U (J) → A (J) having the dense range and

∥∥�|J∥∥ �1.
One can prove [9, Corollary 2.4] that the dual operator �∗ : A (J)∗ → J∗ implements
a homeomorphism between the topological spaces Spec (A (J)) and SJ furnished with
the ∗-weak topologies taken in A (J)∗ and J∗, respectively, where SJ = J∗(1) ∩� (J).

Lemma 18. Let J be a B–L algebra and let a ∈ A (J). There exist elements a
(m)
nk ∈

F, 1�m�n, n, k ∈ Z+, such that the series
∑

n,k

∏n
m=1 a

(m)
nk converges absolutely in

A (J) to a. Moreover, if J is a finite-dimensional nilpotent Lie algebra furnished with

a norm p then
∑

n,k

∏n
m=1 p

(
a

(m)
nk

)
<∞.

Proof. By definition, a = � (y) for some y ∈ �1 (J). Then y = (yn) = ∑n∈Z+ yn

and ‖y‖�1(J) =
∑

n∈Z+ ‖yn‖J⊗̂n < ∞, where yn ∈ J⊗̂n. But, yn = ∑k x
(1)
nk ⊗ · · · ⊗

x
(n)
nk , x

(m)
nk ∈ J, such that

∑
k

∏n
m=1

∥∥∥x(m)
nk

∥∥∥
J

< ‖yn‖J⊗̂n + 2−n. Then a = � (y) =∑
n∈Z+ � (yn) =∑n∈Z+

∑
k

∏n
m=1 a

(m)
nk , where a

(m)
nk = �|J

(
x

(m)
nk

)
. With

∥∥�|J∥∥ �1 in

mind, infer that

∑
n,k

∥∥∥∥∥
n∏

m=1

a
(m)
nk

∥∥∥∥∥
A(J)

�
∑
n,k

n∏
m=1

∥∥∥x(m)
nk

∥∥∥
J

�
∑
n

(
‖yn‖J⊗̂n + 2−n

)
= 2+ ‖y‖�1(J) <∞,

that is, the series
∑

n,k

∏n
m=1 a

(m)
nk converges absolutely in A (J).

Now assume that J is a finite-dimensional nilpotent Lie algebra with a norm p. It
is clear that J is a B–L algebra. Moreover, the Banach enveloping algebra A (J) is a
norm completion of U (J) by virtue of [9, Theorem 3.1], whence � : U (J)→ A (J)

is just the identity embedding. In particular, a
(m)
nk = x

(m)
nk and as we have proved above∑

n,k

∏n
m=1 p

(
x

(m)
nk

)
<∞. �

Theorem 8. Let g be a finite-dimensional normed nilpotent Lie algebra with a norm
p, (X, �) a Banach g-module and let Ag = A (g) be the Banach enveloping algebra
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of the B–L algebra g. If Ag � (X, �) then �̂ (a)− �|Ag (a) = d (�) i� (a)+ i� (a) d (�)

for all a ∈ Ag and � ∈ �t (�) ∩ int
(
g∗(1)

)
, where int

(
g∗(1)

)
is the topological interior

of the unit ball g∗(1) in g∗ with respect to the dual norm p∗.

Proof. To indicate the norm p, we write A (p) instead of A (g). Note that A (p) is

the norm completion of U (g) by [9, Theorem 3.1]. Take � ∈ �t (�) ∩ int
(
g∗(1)

)
. Then

� ∈ � (g) and p∗ (�) < 1. Let us introduce the norm q on g by setting q (x) =
sup{|�(x)| : � ∈ Kε}, where Kε = {� ∈ g∗ : p∗ (�) �ε}, where p∗ (�) < ε < 1. It is
beyond a doubt q �εp and g is a B–L algebra with respect to the norm q. Moreover, the
identity map on U (g) is extended up to an algebra homomorphism u : A (p)→ A (q),
‖u‖ �1, by [9, Proposition 2.2]. Since � ∈ Kε, one follows that |� (x)| �q (x) and
q∗ (�) = sup {|� (x)| : q (x) �1} �1. Then � ∈ Spec (A (q)), that is, � is extended up
to a character �|A(q) on the Banach enveloping algebra A (q) of the B–L algebra g
furnished with the norm q. Moreover, �|A(q) · u = �|A(p), for u|U(g) = id. Further, by
Proposition 6 and Remark 3,

i� (a1 · · · an) =
n∑

s=1

�̂ (a1 · · · as−1) i (as) �|A(q) (as+1 · · · an)

whenever all as ∈ g, where i (as) ∈ B (B (∧g, X)) is the homotopy operator. Take
a ∈ A (p). By Lemma 18, a =∑n,k

∏n
m=1 a

(m)
nk is an absolutely convergent (in A (p))

series, where a
(m)
nk ∈ g. With continuity of �̂ : A (p) → B (B (∧g, X)) in mind, we

conclude that

�̂ (a)− �|A(p) (a)=
∑
n,k

(̂
�

(
n∏

m=1

a
(m)
nk

)
− �|A(p)

(
n∏

m=1

a
(m)
nk

))

=
∑
n,k

(
d (�) i�

(
n∏

m=1

a
(m)
nk

)
+ i�

(
n∏

m=1

a
(m)
nk

)
d (�)

)
. (6.1)

Moreover, i�

(∏n
m=1 a

(m)
nk

)
= ∑n

s=1 �̂
(
a

(1)
nk · · · a(s−1)

nk

)
i
(
a

(s)
nk

)
�|A(q)

(
a

(s+1)
nk · · · a(n)

nk

)
.

We set i� (a) = ∑n,k i�

(∏n
m=1 a

(m)
nk

)
. Let us prove that the latter series converges.

Indeed,

‖i� (a)‖ �
∑
n,k

n∑
s=1

∥∥∥̂�∥∥∥ ∥∥∥a(1)
nk · · · a(s−1)

nk

∥∥∥A(p)

∥∥∥i (a(s)
nk

)∥∥∥ ∥∥∥a(s+1)
nk · · · a(n)

nk

∥∥∥A(q)

�
∥∥∥̂�∥∥∥∑

n,k

n∑
s=1

p
(
a

(1)
nk

)
· · ·p

(
a

(s)
nk

)
q
(
a

(s+1)
nk

)
· · · q

(
a

(n)
nk

)
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�
∥∥∥̂�∥∥∥∑

n,k

p
(
a

(1)
nk

)
· · ·p

(
a

(n)
nk

) n∑
s=1

εn−s

�
∥∥∥̂�∥∥∥ (1− ε)−1

∑
n,k

p
(
a

(1)
nk

)
· · ·p

(
a

(n)
nk

)
<∞,

here we took into account that ‖i (u)‖ �p (u), u ∈ g, and
∑

n,k p
(
a

(1)
nk

)
· · ·p

(
a

(n)
nk

)
<

∞ by virtue of Lemma 18. Using (6.1), we infer that �̂ (a)−�|A(p) (a) = d (�) i� (a)+
i� (a) d (�). �

The following assertion generalizes Lemma 7.5 from [6].

Corollary 12. Let g be a finite-dimensional normed nilpotent Lie algebra with a norm
p, (X, �) a Banach g-module and let A (g) be the Banach enveloping algebra of B–L
algebra g. If �

(
�
(
g(1)

))
< 1 then A (g) � (X, �) and all elements of the algebra A (g)

are splitting over the g-module X.

Proof. As we noted above that the subalgebra of all polynomials taken by g is dense
in A (g). Moreover, one can prove (see [9, Lemma 5.2]) that �

(
�
(
g(1)

))
��
(
�
(
g(1)

))
.

It follows that A (g) � (X, �) by virtue of [9, Proposition 2.2] and Definition 4.

Now let us prove that �t (�) ⊆ int
(
g∗(1)

)
. Take � ∈ �t (�). By Proposition 9, � (x) ∈

sp (� (x)), x ∈ g. Therefore

p∗ (�) = sup {|� (x)| : p (x) �1} � sup {� (� (x)) : p (x) �1} ��
(
�
(
g(1)

))
< 1,

that is, p∗ (�) < 1 or � ∈ int
(
g∗(1)

)
. By Theorem 8, all elements from the algebra

A (g) are splitting over the g-module X. �

Remark 6. Note that �
(
�
(
g(1)

)) = max
{
� (� (x)) : x ∈ g(1)

}
by [27], therefore instead

of the condition �
(
�
(
g(1)

))
< 1 in Corollary 12 one can just demand � (� (x)) < 1 for

all x ∈ g(1).

Corollary 13. Let g be a normed finite-dimensional nilpotent Lie algebra, (X, �) a
Banach g-module and let S be a subset in the Banach enveloping algebra A (g) gen-
erating a quasinilpotent normed Lie subalgebra F ⊆ A (g) such that F̂ ∈ Proj . If
�
(
�
(
g(1)

))
< 1 then A (g) � (X, �) and

�u

(
�|A(g)|F

)
= � (�) |A(g)|F, � ∈ S�.
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In particular, if dim (F) <∞ then F is a nilpotent Lie algebra and

�
(
�|A(g)|F

)
= � (�) |A(g)|F, � ∈ S.

Moreover, if A ⊆ A (g) is a finite-dimensional Lie subalgebra then A� = �|A(g) (A)

is solvable and

� (A�) = � (� (g)) |A� |A� , � ∈ KS,

where A� is the closed associative hull of � (g) in B (X).

Proof. The assertion on the infinite-dimensional spectral mapping theorem directly fol-
lows from Theorem 6 and Corollary 12.

Now assume that dim (F) <∞. Demonstrate that F should be nilpotent. Consider the
following set M = {x ∈ F : sp (ad (x) |F) = {0}}. Taking into account that S ⊆ M , one
suffices to prove that M is a Lie subalgebra in F. Undoubtedly, �M ⊆ M for all � ∈ C.
By Lemma 3, the Banach enveloping algebra A (g) is commutative modulo its Jacobson
radical RadA (g). It follows that F is a solvable Lie algebra and [M, M] ⊆ M . By
Lie theorem, M +M ⊆ M , whence M is a Lie subalgebra. Therefore F is nilpotent.

The finite-dimensional spectral mapping theorem for F follows from Corollary 8.
Finally, the spectral mapping theorem for the Cartan–Slodkowski spectra follows from
Corollary 10. �

6.3. The Fréchet algebra Og (D)

The next example is the Fréchet algebra Ag = Og (D) of all holomorphic functions
in elements of g on an absolutely convex domain D ⊆ � (g) (see [9]). By definition [9],
Og (D) is the inverse limit of some projective system of Banach enveloping algebras
A (g). One proves [9, Section 5] that Og (D) � (X, �) iff � (�) ⊂ D for a certain
� ∈ S.

Proposition 11. Let g be a finite-dimensional nilpotent Lie algebra, D an absolutely
convex domain in � (g) and let (X, �) be a Banach g-module. If Og (D) � (X, �) then
all elements of the algebra Og (D) are splitting over the module X.

Proof. By using [9, Lemma 5.1], we infer that the condition Og (D) � (X, �)

implies that �
(
�
(
g(1)

))
< 1 for a certain norm on g and the continuous algebra

homomorphism �̂ : Og (D) → B (B (∧g, X)) splits into the superposition Og (D)
�→

A (g)
�̂→B (B (∧g, X)) of the canonical projection � of the inverse limit defining Og (D)

and the bounded homomorphism �̂ : A (g) → B (B (∧g, X)) taken on the ground of
A (g) � (X, �) (see Corollary 12). It remains to apply Theorem 8 (note that �t (�) ⊆
int
(
g∗(1)

)
). �
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In particular, we obtain a generalization of the finite-dimensional spectral mapping
theorem from [9].

Corollary 14. Let g be a finite-dimensional nilpotent Lie algebra, (X, �) a Banach
g-module, D an open absolutely convex neighborhood of some Slodkowski spectrum
� (�) and let S a subset in Og (D) generating a quasinilpotent normed Lie subalgebra
F ⊆ Og (D) such that F̂ ∈ Proj . Then Og (D) � (X, �) and

�u

(
�|Og(D)|F

)
= � (�) |Og(D)|F, � ∈ S�.

In particular, if dim (F) <∞ then F is a nilpotent Lie subalgebra and

�
(
�|Og(D)|F

)
= � (�) |Og(D)|F, � ∈ S.

Moreover, if A ⊆ Og (D) is a finite-dimensional Lie subalgebra then A� = �|Og(D) (A)

is solvable and

� (A�) = � (� (g)) |A� |A� , � ∈ KS,

where A� is the closed associative hull of � (g) in B (X).

Proof. One suffices to apply Theorem 6, Proposition 11 and Corollaries 8, 10. �

6.4. Formally-radical functions

Our last example is the algebra of all formally-radical functions Fg (D) on an open
subset D ⊆ � (g) [10]. One defines a sheaf Fg of Fréchet (noncommutative) algebras
on � (g) such that the enveloping algebra U (g) is embedded into the algebra Fg (D)

of all sections over an open subset D as a subalgebra. Note that Fg as a sheaf of
Fréchet spaces is the projective tensor product O⊗̂C [[e1, . . . , es]] of the sheaf O of
germs of holomorphic functions and the constant sheaf [15, Ch. 2] generated by the
Fréchet space C [[e1, . . . , es]] of all formal power series in s-variables e = (e1, . . . , es),
where s = dim

([
g, g
])

. Note that e can be interpreted as a basis of
[
g, g
]
. Thus

Fg (D) = O (D) [[e1, . . . , es]] (6.2)

is the Fréchet space of all formal power series of s-variables over the space O (D),
whenever D is an open subset in � (g). In particular, Fg = O if g is a commutative
Lie algebra. Fix an open set D ⊆ � (g). The algebra O (D) is embedded into Fg (D)

as a closed subspace Sg (D) such that

Fg (D) = Sg (D)⊕ RadFg (D) (6.3)
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(see [10] and also [9]). Thus the quotient homomorphism �D : Fg (D) → O (D)

modulo the Jacobson radical RadFg (D) is a retraction (as a Fréchet space operator)
with the right inverse �D : O (D)→ Fg (D) (let us emphasize that �D is not an algebra
homomorphism).

Now let X ∈ BS and let � : g→ B (X) be a Lie representation such that �
([
g, g
])

consists of nilpotent operators. In this case, we say that � (g) is a supernilpotent Lie
subalgebra in B (X). If D is an open neighborhood (in � (g)) of the Taylor spectrum
�t (�) then there exists a continuous algebra homomorphism �|Fg(D) : Fg (D)→ B (X)

extending � [10]. That is the generalization of Taylor functional calculus for commuting
operators [24].

Below, as a corollary of our framework we suggest spectral mapping theorem with
respect to this calculus whenever D is a Stein Fg-rational domain.

We say that D is a Fg-rational domain in � (g) if the full subalgebra R (g) ⊆ Fg (D)

is dense in Fg (D). Since �D (R (g)) is the subalgebra (in O (D)) of usual rational
functions on D, it follows that the property being approximated by rational functions
of each holomorphic function on the domain D inherits from Fg (D), that is, each Fg-
rational domain in � (g) is O-rational. But, we do not know whether or not a O-rational
domain is Fg-rational. Note that U (g) is dense in Fg (D) iff the usual polynomials is
dense in O (D).

Theorem 9. Let g be a finite-dimensional nilpotent Lie algebra, (X, �) a Banach
g-module such that � (g) is a supernilpotent Lie subalgebra in B (X) and let D be
a Fg-rational domain in � (g) containing the Taylor spectrum �t (�). Then Fg (D) �
(X, �), and all elements from the algebra Fg (D) are splitting over the g-module X
whenever D is additionally a Stein domain.

Proof. Note that B (∧g, X) = ⊕k∈Z+ Ck (g, X) and � = ⊕k∈Z+ �k , therefore

�t (�) =
⋃

k∈Z+
�t (�k) = �t (�) ∪

⋃
k∈N

�t (�k) = �t (�)

by virtue of Corollary 2. Moreover, � (a) = L�(a)−RT (a) for all a ∈ g. By assumption,
all operators � (a) ∈ B (X), a ∈ [g, g], are nilpotent. Then � (a) as the difference of
mutually commuting nilpotent operators L�(a) and RT (a) (see [6, Lemma 6.1]) is a
nilpotent operator, therefore � (g) is a supernilpotent Lie subalgebra in B (B (∧g, X)).
Using the functional calculus theorem [10] for the sheaf Fg and with respect to the
Lie representation � : g→ B (B (∧g, X)), we infer that � extends up to a continuous
algebra homomorphism �̂ : Fg (D) → B (B (∧g, X)). Moreover, �̂ (R (g)) is dense in
�̂
(Fg (D)

)
, thereby Fg (D) � (X, �) by Definition 4.

Now additionally assume that D is a Stein domain. Take a ∈ Fg (D) and � ∈ �t (�) ⊂
D. One suffices (see Definition 5) to prove that

�̂ (a)− �|Fg(D) (a) = d (�) i� (a)+ i� (a) d (�)
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for some i� (a) ∈ B (B (∧g, X)), where d (�) is the differential of C• (�− �). By (6.2),
the element a has unique expansion a =∑J∈Zs+ aJ ·eJ as a formal power series, where

aJ ∈ Sg (D), e is a basis
[
g, g
]
, and aJ ·eJ = aJ e

j1
1 · · · ejs

s is the multiplication of rele-
vant elements in the algebra Fg (D), J = (j1, . . . , js). By (6.3), a ∈ RadFg (D) iff a =∑
|J |>0 aJ · eJ , where |J | =∑k jk . For each tuple J ∈ Zs+, |J | > 0, the most nonzero

index in J is denoted by mJ and we set J = (j1, . . . , jmJ−1, 0, . . . , 0
) ∈ Zs+. Then

ak = ∑J∈Mk
aJ · eJ ∈ Fg (D) (see (6.2)), where Mk =

{
J ∈ Zs+ : |J | > 0, mJ = k

}
,

1�k�s. First, assume that a ∈ RadFg (D). Using Corollary 3, we infer that

�̂ (a)− �|Fg(D) (a)= �̂ (a) = �̂

⎛⎝ s∑
k=1

∑
J∈Mk

aJ · eJ

⎞⎠ = s∑
k=1

∑
J∈Mk

�̂
(
aJ · eJ

)
� (ek)

=
s∑

k=1

∑
J∈Mk

�̂
(
aJ · eJ

)
(d (�) i (ek)+ i (ek) d (�))

=
s∑

k=1

∑
J∈Mk

(
d (�) �̂

(
aJ · eJ

)
i (ek)+ �̂

(
aJ · eJ

)
i (ek) d (�)

)
= d (�) i (a)+ i (a) d (�) ,

where i (a) =∑s
k=1 �̂ (ak) i (ek). Further, assume that a ∈ Sg (D), that is, a = �D (f )

for some f ∈ O (D). By assumption, D is a Stein domain. By Hefer’s decomposition
theorem [20, Ch. 5, Section 2.2], f −f (�) =∑m

k=1 gk ·(zk − �k) for some gk ∈ O (D),
where m = dim

(
g/
[
g, g
])

, � (g) is identified with the complex space Cm, zk are the
coordinate linear functions on Cm and � = (�1, . . . , �m). Then

a − �|Fg(D) (a) = �D (f − f (�)) =
m∑

k=1

ak · (xk − � (xk))+ b,

where ak = �D (gk), xk = �D (zk) ∈ g, b = ∑m
k=1 (�D (gk · (zk − �k))− ak · (xk−

� (xk))). Note that

�D (b)=
m∑

k=1

(
�D�D (gk · (zk − �k))− �D (ak · (xk − � (xk)))

)

=
m∑

k=1

(
gk · (zk − �k)− �D (ak) · �D (xk − � (xk))

) = 0,
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whence b ∈ RadFg (D) and �̂ (b) = d (�) i (b)+ i (b) d (�) as we have proved above.
Finally,

�̂ (a)− �|Fg(D) (a) =
m∑

k=1

�̂ (ak) · (� (xk)− � (xk))+ �̂ (b) = d (�) i� (a)+ i� (a) d (�) ,

where i� (a) =∑m
k=1 �̂ (ak) i (xk)+i (b). By appealing (6.3), we obtain that all elements

of Fg (D) are splitting over the g-module X. �

Corollary 15. Let g be a finite-dimensional nilpotent Lie algebra, (X, �) a Banach
g-module such that � (g) is a supernilpotent Lie subalgebra in B (X), D a Stein Fg-
rational domain in � (g) containing the Taylor spectrum �t (�) and let S ⊆ Fg (D)

be a subset generating a quasinilpotent normed Lie subalgebra F ⊆ Fg (D) such that
F̂ ∈ Proj . Then Fg (D) � (X, �) and

�u

(
�|Fg(D)|F

)
= � (�) |Fg(D)|F, � ∈ S�.

In particular, if dim (F) <∞ then F is a nilpotent Lie subalgebra and

�
(
�|Fg(D)|F

)
= � (�) |Fg(D)|F, � ∈ S.

Moreover, if A ⊆ Fg (D) is a finite-dimensional Lie subalgebra then A� = �|Fg(D) (A)

is solvable and

� (A�) = � (� (g)) |A� |A� , � ∈ KS,

where A� is the closed full subalgebra in B (X) generated by � (g).

Proof. Note that Fg (D) is commutative modulo its Jacobson radical therefore if S
generates a finite-dimensional quasinilpotent Lie subalgebra then it is automatically
nilpotent. By appealing Theorems 6, 7, 9 and Corollary 8, we end the proof. �
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