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1. Introduction

Let L (X) be the Banach algebra of all bounded linear operators acting on a
complex Banach space X and let T = (T1, . . . , Tm) be a family of operators in
L (X) generating a finite-dimensional nilpotent Lie subalgebra gT ⊆ L (X). It is
known [21] that the Lie ideal [gT , gT ] of commutators consists of quasinilpotent
operators. We say that T generates a supernilpotent Lie algebra gT if [gT , gT ]
consists of nilpotent operators. Obviously, each mutually commuting operator
tuple generates automatically a supernilpotent Lie algebra. Moreover, if X is a
finite-dimensional space then each nilpotent Lie subalgebra in L (X) is supernilpo-
tent. The class of noncommutative supernilpotent Lie algebras of operators on an
infinite-dimensional Banach space X is sufficiently wider than the class of commu-
tative Lie algebras. The well developed joint spectral theory for an operator tuple
T generating a nilpotent Lie algebra has been proposed in papers [1], [6], [7], [12].
In particular, we have a well defined Taylor spectrum σ (T ) of the operator tuple T
which possesses the spectral mapping property with respect to the noncommuta-
tive polynomials. The relevant (noncommutative) holomorphic functional calculus
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about the Taylor spectrum σ (T ) remains inexplicit. Some developments toward
this problem have been done in [3], [4], [5], [6], [10], [17]. The aim to conduct Tay-
lor’s program [20] (see [11] for the commutative case) on the general framework of
the “noncommutative holomorphic functional calculus” for a nilpotent Lie algebra
of bounded linear operators. The basic result of Taylor’s approach is to create
a subtle connection between the joint spectral theory and topological homology
(see [20], [11] for the commutative case). Namely, the resolvent set with respect
to the Taylor spectrum can be described in terms of the transversality behavior
of the sheaf O of germs of holomorphic functions in several complex variables.
The operator families generating supernilpotent Lie algebras have great advanta-
geous to implement that connection in the noncommutative case. One may use
the Fréchet algebra sheaf Tg of germs of formally-radical functions in elements of
a positively graded nilpotent Lie algebra (the noncommutative variable space) g
proposed in [8] (see also [5]). As a sheaf of the Fréchet spaces, Tg has a relatively
simple structure, namely it is just the projective tensor product

Tg = O⊗̂C [[ω1, . . . , ωk]]

of the sheaf O of germs of usual holomorphic functions over C
m and the con-

stant sheaf C [[ω1, . . . , ωk]] of all formal power series in k-variables, where m =
dim (g/ [g, g]) and k = dim ([g, g]). The algebraic structure on Tg (D) for a poly-
disk D is uniquely lifted from the universal enveloping algebra U (g) which is its
proper subalgebra (see Section 3). Confirm that similar construction is used in
the noncommutative algebraic geometry in [16]. In particular, Tg = O whenever
g is a commutative Lie algebra. If T is a m-tuple of operators on X generating a
supernilpotent Lie algebra then X turns out to be a left Banach module over the
Fréchet algebra Fg = Tg (Cm) of all global sections of the sheaf Tg, that is, all
entire formally radical functions act on X. Moreover, Tg (D) possesses the Koszul
resolution [5], [8], which is a free Tg (D)-bimodule resolution.

In the present paper we prove the crucial result of Taylor’s approach on
the connection between Taylor spectrum and transversality for an operator family
generating a supernilpotent Lie algebra. Namely, let T be a m-tuple of bounded lin-
ear operators on a Banach space generating a supernilpotent Lie algebra in L (X).
Then X turns out to be a Banach left Fg-module for a certain nilpotent Lie alge-
bra g of noncommutative variables, and the resolvent set C

m\σ (T ) with respect to
the Taylor spectrum σ (T ) consists of those λ ∈ C

m such that Tg (D) ⊥Fg X (that
is, TorFg

k (Tg (D) , X) = {0} for all k) for a certain small polydisk D containing λ.
Moreover,

Tg (D) ⊥Fg X ⇐⇒ D ∩ σ (T ) = ∅.

This result plays a key role in the solution of the noncommutative holomorphic
functionl calculus problem for a supernilpotent Lie algebra of operators [9]. Con-
firm that we are using homology theory for the topological algebras developed by
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J. Taylor [19] and A. Ya. Helemskii [14]. The proof is based upon a noncommuta-
tive version of the known result on analytically parametrized complexes of Banach
spaces [18] by J. Taylor.

2. Preliminaries

All considered linear spaces are complex and algebras are assumed to be unital
and associative. Taking a linear space X, ∧X = ⊕k≥0 ∧k X is the exterior algebra
of X. If u = u1∧ . . .∧uk ∈ ∧kX is a k-vector then we use the following denotation
ui = u1 ∧ . . .∧ ûi ∧ . . .∧uk, for (k − 1)-vector, where ûi means the omission of the
variable ui. If we throw out two variables ui and uj , i < j, from the expression of u,
the obtained vector is denoted by uij . The space of all X-valued polynomials in s
variables is denoted by X [ω1, . . . , ωs], whereas X [[ω1, . . . , ωs]] denotes the space of
all X-valued formal power series in s variables, so, each its element f has the unique
formal power series expansion f =

∑
J∈Zs

+
xJωJ , where xJ ∈ X, ωJ = ωj1

1 · · ·ωjs
s .

If X and Y are Fréchet spaces then the space of all continuous linear mappings
X → Y is denoted by L (X, Y ), we also write L (X) instead of L (X, X). We
use the conventional notation X⊗̂Y for the projective tensor product of these
spaces. If {pt : t ∈ Λ} is a defining countable seminorm family in X then the space
X [[ω1, . . . , ωs]] turns out to be a Fréchet space with its defining seminorm family{
qt,K : (t, K) ∈ Λ × Z

s
+

}
, where qt,K (f) = max {pt (xJ) : J ≤ K}. One may easily

verify that the topology generated by the latter seminorm family is merely the
direct product topology of XZ

s
+ . In particular,

X [[ω1, . . . , ωs]] = X⊗̂C [[ω1, . . . , ωs]] ,

and if X is a nuclear space then so is the space X [[ω1, . . . , ωs]].
The Jacobson radical of a (Fréchet) algebra A is denoted by RadA. The left

(respectively, right) multiplication operator on A is denoted by La (respectively,
Ra), that is, La (x) = ax and Ra (x) = xa for all a, x ∈ A. The unit of A is
denoted by 1A. A Fréchet algebra A with its distinguished continuous character
(multiplicative linear functional) εA : A → C is called an augmented algebra.
Further, a Fréchet space X is said to be a left Fréchet A-module if X has a
structure of a left A-module such that the mapping A × X → X, (a, x) �→ a · x
is jointly (or separately) continuous. By analogy, it is defined a right (bi)module
over A. The category (usually we refer as a class) of all left Fréchet A-modules is
denoted by A-mod. On the same manner mod-A (respectively, A-mod-A) denotes
the category of all right (respectively, bi)modules. If A is an augmented algebra
with its distinguished continuous character εA : A → C then the one-dimensional
space C turns into a A-module via pullback along εA called the trivial A-module
and denoted by C (εA).

The universal enveloping algebra of a finite-dimensional Lie algebra g is de-
noted by U (g). The algebra U (g) turns out to be a topological algebra equipped
with the finest locally convex topology. The space of all Lie characters of a Lie
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algebra g is denoted by ∆ (g). The space of all characters of U (g) is identified
with ∆ (g), that is, each Lie character λ ∈ ∆ (g) has a unique extension up to
a character on U (g) denoted by λ, too. Take a basis e = (e1, . . . , en) in a Lie
algebra g. For a n-tuple J = (j1, . . . , jn) ∈ Z

n
+ of nonnegative integers we put

eJ = ej1
1 · · · ejn

n to indicate the ordered monomial in U (g) taken by the basis e. By
Poincare-Birkhoff-Witt theorem (see [2, 2.2.1]), the set

{
eJ

}
⊆ U (g) of all ordered

monomials is an algebraic basis in U (g). For each k, let introduce the “insertion”
operator ∆ek

∈ L (U (g)) by the rule

∆ek

(
ej1
1 · · · ejn

n

)
= ej1

1 · · · ejk+1
k · · · ejn

n

for all ordered monomials eJ .
Now, let g be a finite-dimensional nilpotent Lie algebra with its vanishing

lower central series
{
g(s) : s ≥ 1

}
, where g(1) = g, g(s) =

[
g, g(s−1)

]
if s > 1. A

basis e = (e1, . . . , en) in g is said to be a triangular basis if it obeys to the lower
central series. Thus [ei, ej ] =

∑
k>j ck

ijek whenever i < j. If g = g1 ⊕ · · · ⊕ gc is
graded with the positive integers 1, . . . , c then each basis subordinated to the latter
decomposition (called a graded basis) is a triangular one. For a triangular basis
e = (e1, . . . , en) of a nilpotent Lie algebra g, er = (em+1, . . . , en) will be a basis in
[g, g] for a certain m. We say that er is a radical part of e and es = (e1, . . . , em)
is a semisimple part of e. In that concern, we also write Js = (j1, . . . , jm) and
Jr = (jm+1, . . . , jn) if J = (j1, . . . , jn) ∈ Z

n
+, confirm also that J = Js ∪ Jr. The

set
{
eJ

}
of all ordered monomials turns into a linearly ordered set with respect to

the relation: eI � eJ if the first nonzero integer in the tuple (jn − in, . . . , j1 − i1)
is positive.

The following lemma on a commutator can easily be proved based upon the
induction argument (for the details see [8]).

Lemma 2.1. Let e = (e1, . . . , en) be a triangular basis of a nilpotent Lie algebra g,
such that em+1, . . . , en is a basis in [g, g], I = (i1, . . . , im) ∈ Z

m
+ , 1 ≤ i ≤ n and

let k = max {i,m}. Then[
ei, e

I
s

]
=

n∑
t=k+1

pI,t (e1, . . . , em) et,

where pI,t ∈ C [ω1, . . . , ωm].

Now, let A be a Banach algebra and let g be its finite-dimensional nilpo-
tent Lie subalgebra. The closed associative envelope B of g in A is a commutative
algebra modulo its Jacobson radical RadB thanks to Turovskii Lemma [21]. There-
fore Rad B is the set of all quasinilpotent elements in B which is just the left (or
right) closed ideal in B generated by the Lie ideal [g, g]. We say that g is a su-
pernilpotent Lie algebra in A if each a ∈ [g, g] is nilpotent in A. Note that if A
is a finite-dimensional Banach algebra then each its nilpotent Lie subalgebra is
supernilpotent one. Moreover, a commutative Lie subalgebra of a Banach algebra
A is supernilpotent, too. If A = L (X) is the Banach algebra of all bounded linear
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operators on a Banach space X and g is a supernilpotent Lie algebra in A then we
say that g is a supernilpotent Lie algebra of operators. As an example of operators
acting on an infinite-dimensional Banach space X generating (noncommutative)
supernilpotent Lie subalgebra in L (X), we suggest the following operators.

Example. Let X = �p (p ≥ 1) be the Banach space of all p-th degree absolutely
convergent sequences and let {en}n∈N

be its canonical basis. We set T, S ∈ L (X),

T (e2n−1) = e2n+1, T (e2n) = n−1 (n + 1) e2n+2,

S (e2n−1) = e2n−1, S (e2n) = e2n + e2n−1,

for all n ∈ N. Then [T, S] �= 0, [T, [T, S]] = [S, [T, S]] = 0 and [T, S]2 = 0.
Thus the operators T and S generate a nilpotent Lie algebra with the nilpotent
commutators.

The following lemma asserts that the radical part of a supernilpotent Lie
algebra can be enclosed into a finite dimensional linear space.

Lemma 2.2. Let g be a supernilpotent Lie subalgebra of A. Then [g, g] generates a
finite-dimensional nilpotent associative subalgebra in A.

Proof. Let B be an associative subalgebra in A generated by [g, g]. Take a trian-
gular basis e = (e1, . . . , en) in g such that er = (em+1, . . . , en) is a basis in [g, g].
Then ek

i = 0 in A for all i, i > m, and for some k. Since monomials eJ
r in A

generate B as a linear space, it follows that dim (B) < +∞.
Now, take a polynomial x =

∑
J aJeJ

r ∈ B, which is the range of the “free”
polynomial y =

∑
J aJeJ

r ∈ U (g). Let us prove that x is nilpotent. First, intro-
duce a (nilpotent) degree of (non-ordered) monomials ei1 · · · eis in U (g) taken by
e in g. We set deg (ei) = max

{
k : ei ∈ g(k)

}
for all elements ei of the basis e. If

v = ei1 · · · eis then the degree deg (v) of v is the sum deg (ei1)+ · · ·+deg (eis). We
use the notation 〈J〉 instead of deg

(
eJ

)
, that is, when v = eJ is an ordered mono-

mial. Let Uk (e) be a subspace in U (g) generated by all ordered monomials eJ of
the degree k, and let Uk (e) be a subspace in U (g) generated by all (non-ordered)
monomials ei1 · · · eis

of degree at least k. Obviously, Uk (e) · Us (e) ⊆ Uk+s (e).
Bearing in mind that the set

{
eJ

}
is an algebraic basis in U (g), we deduce the

following decomposition

U (g) = U0 (e) ⊕ · · · ⊕ Uk−1 (e) ⊕ Uk (e) for each k.

Note that each subspace Uk (e) is finite-dimensional with the basis
{
eJ : 〈J〉 = k

}
and Uk (e) =

⊕
i≥k Ui (e) (see [4]). Undoubtedly, y ∈ U2 (e) and yp ∈ U2p (e) for

all p. But
U2p (e) =

⊕
i≥2p

Ui (e) ,

therefore yp has a unique expansion by means of the ordered radical monomials
eJ
r ∈ U (g), 〈J〉 ≥ 2p. But

〈J〉 = deg
(
eJ
r

)
=

∑
i>m

ji deg (ei) ,
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whence, xp = 0, whenever 2p ≥ (n − m) kc, where c is the nilpotence power of g

(that is, g(c) �= {0}, g(c+1) = {0}). Thus, there exists p, such that xp = 0 for all
x ∈ B. Thereby B is a nilpotent subalgebra. �

Finally, take a = (a1, . . . , an) ∈ C
n, r = (r1, . . . , rn) ∈ R

n

+, and let Da,r be a
polydisk in C

n of multiradius r centered at a. If a = 0 then we write Dr instead of
D0,r. If X is a Banach space then the space of all X-valued holomorphic functions
on an open set U is denoted by O (U,X). For X = C, we write O (U) instead of
O (U, C). Remind that O (U,X) is a Fréchet space and O (U) is a Fréchet algebra
with respect to the compact-open topology, and O (U,X) = O (U) ⊗̂X [13] (see
also [14, Ch. 2]). If U = Da,r and t ∈ R

n
+ with 0 < t < r, then the seminorm set∥∥∥∥∥∑

J

xJ(z − a)J

∥∥∥∥∥
t

=
∑

J

‖xJ‖X tJ , t ∈ Λ, (2.1)

on O (Da,r, X) are equivalent to one associated by the compact-open topology due
to the known Cauchy inequality.

3. Formally-Radical Functions in Elements of a Nilpotent Lie
Algebra

In this section we remind the basic properties of the formally radical functions in
elements of a nilpotent Lie algebra investigated in [5], [8].

Everywhere below we fix a finite dimensional positively graded nilpotent Lie
algebra g and its basis e = (e1, . . . , en) which obeys to that grading. Since each
nilpotent Lie algebra can be presented as a quotient of a positively graded nilpotent
Lie algebra, that will motivate our choice g as the noncommutative variable space.
Indeed, let h be a finite dimensional nilpotent Lie algebra generated by x1, . . . , xm.
Consider the quotient g of the free Lie algebra generated by m elements e1, . . . , em

modulo the appropriate order of its lower central series. Evidently, g admits posi-
tive grading with numbers 1, . . . , c, where c is the nilpotence degree of h. Moreover,
there exists a Lie epimorphism τ : g → h such that τ (ei) = xi, 1 ≤ i ≤ m.

Let re ⊆ U (g) be a subset of all radical monomials eJr
r = e

jm+1
m+1 · · · ejn

n (1 = eJr
r

for Jr = (0, . . . , 0)), Jr ∈ Z
n−m
+ . Evidently, re is a subset of the linearly ordered

set
{
eJ

}
of all ordered monomials (see Section 2). If Dr is a polydisk in the

character space ∆ (g)(= C
m) of multiradius r centered at the origin then the

Fréchet algebra Fg (Dr) of all formally radical functions in elements of g is defined
as the Fréchet space O (Dr) [[em+1, . . . , en]] of all formal power series over the
Fréchet space O (Dr) in several radical variables er. Thus each f ∈ Fg (Dr) has a
unique formal power series expansion

f =
∑
Jr

fJre
Jr
r ,
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where fJr ∈ O (Dr). If p =
∑

J xJeJ ∈ U (g) then p =
∑

Jr
pJre

Jr
r , where pJr =∑

Is
xIs∪Jre

Is . If we identify pJr with a polynomial
∑

Is
xIs∪Jrz

Is in O (Dr) then
p =

∑
Jr

pJre
Jr
r ∈ Fg (Dr). Thus U (g) is a dense subspace in Fg (Dr). Moreover,

the multiplication on U (g) can uniquely be lifted up to the jointly continuous
(noncommutative) multiplication ∗ on Fg (Dr) called the nilpotent convolution [8].
Whence Fg (Dr) is a Fréchet algebra and U (g) is its dense subalgebra. Moreover,
the space of all continuous characters on Fg (Dr) is identified with the polydisk Dr

[8]. If X is a Banach space then the space Fg (Dr, X) of X-valued formally radical
functions in elements of g is defined as the projective tensor product Fg (Dr) ⊗̂X.
It is not so hard to prove that the set

{
eJ

}
of all ordered monomials in U (g) is

an absolute X-valued basis in Fg (Dr, X) [8], that is, each f ∈ Fg (Dr, X) has a
unique power series expansion f=

∑
J xJeJ , xJ ∈ X, as absolutely convergent in

Fg (Dr, X) power series. Without any doubt,

Fg (Dr, X) = O (Dr, X) [[er]]

to within a topological isomorphism.
Now, take a point a ∈ ∆ (g) and let g − a be a Lie subalgebra in U (g)

comprising all elements u − a (u), u ∈ g. We set Fg (Da,r) = Fg−a (Dr) for a
polydisk Da,r ⊆ ∆ (g) of multiradius r centered at a. If Db,v ⊂ Da,r ⊆ ∆ (g) are
polydisks then we have a well defined restriction mapping

P a,r
b,v : Fg (Da,r) → Fg (Db,v) , P a,r

b,v

(∑
Jr

fJre
Jr
r

)
=

∑
Jr

(
fJr |Db,v

)
eJr
r ,

where fJr |Db,v
is the usual restriction of the holomorphic function fJr ∈ O (Da,r).

This is a continuous algebra homomorphism [8]. Take arbitrary points a, b, c in
∆ (g), f ∈ Fg (Da,r), g ∈ Fg (Db,v), and let Dc,q ⊂ Da,r ∩ Db,v. Then f =∑

Jr
fJre

Jr
r , g =

∑
Jr

gJre
Jr
r , where fJr ∈ O (Da,r), gJr ∈ O (Db,v). Assume that

P a,r
c,q (f) = P b,v

c,q (g), where P a,r
c,q : Fg (Da,r) → Fg (Dc,q) and P b,v

c,q : Fg (Db,v) →
Fg (Dc,q) are the algebra homomorphisms. Then fJr |Dc,q = gJr |Dc,q for all Jr.
Therefore, fJr |Da,r∩Db,v

= gJr |Da,r∩Db,v
. In this situation, we write f |Da,r∩Db,v

=
g|Da,r∩Db,v

. Let U be a non-empty open subset in C
m. Then U has a countable

cover U = ∪iDi by open polydisks Di = Dai,ri
. Let Fg (U) be a subspace of the

topological direct product
∏

i Fg (Di) comprising all compatible elements {fi}i,
that is, fi|Di∩Dj = fj |Di∩Dj for all i, j. Since the “restriction” mappings P a

b are
continuous, it follows that Fg (U) is a closed subspace, thereby, Fg (U) is a Fréchet
space. The nilpotent convolution is extended up to Fg (U) by the canonical way:

{fi}i ∗ {gi}i = {fi ∗ gi}i .

Then (fi ∗ gi) |Di∩Dj
= fi|Di∩Dj

∗gi|Di∩Dj
= fj |Di∩Dj

∗gj |Di∩Dj
= (fj ∗ gj) |Di∩Dj

for all i,j. Thus Fg (U) is a Fréchet algebra with respect to the nilpotent convolu-
tion. Moreover,

Fg (U) = O (U) [[er]]
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as the Fréchet space [8]. In particular, the space Fg (U) does not depend upon
the particular choice of a polydisk cover {Di} of U . Therefore, if U = Da,r is a
polydisk then Fg (U) = Fg (Da,r). If X is a Banach space then

Fg (U) ⊗̂X = O (U,X) ⊗̂C [[er]] = O (U,X) [[er]] (3.1)

to within a topological isomorphism of the Fréchet spaces. In particular, each
f ∈ Fg (U) ⊗̂X has a unique expansion f =

∑
Jr

fJr
eJr
r as formal power series,

where fJr
∈ O (U,X).

Finally, if · · · ←− Xn−1
Tn−1←− Xn

Tn←− Xn+1 ←− · · · is an exact sequence of
Fréchet spaces then the sequence

· · · ←− Fg (U) ⊗̂Xn−1
1⊗Tn−1←− Fg (U) ⊗̂Xn

1⊗Tn←− Fg (U) ⊗̂Xn+1 ←− · · ·
remains exact. Indeed, it is well known [14, 2.4.16] that the sequence

· · · ←− O (U,Xn−1)
1⊗Tn−1←− O (U,Xn) 1⊗Tn←− O (U,Xn+1) ←− · · ·

remains exact. It remains to note that the functor ◦⊗̂C [[ω1, . . . , ωn−m]] applied
to the latter complex does not change its exactness [19], for C [[ω1, . . . , ωn−m]] is
a nuclear Fréchet space.

4. Parametrization

In this section we generalize Taylor’s result on analytically parametrized Banach
space complexes [18, Theorem 2.2] for noncommutative polynomials. Since we deal
with the operators on Fg (U) which can be expressed in terms of infinite triangular
matrices, first we introduce triangular matrices in its general framework.

4.1. Triangular Matrices

Let Xn, Yn, n ∈ N, be Fréchet spaces and let X =
∏

n Xn, Y =
∏

n Yn be their
topological direct products. Note that each element x ∈ X has a unique expansion
x =

∑
n ιX,n (πX,n (x)) as unconditionally convergent (in X) series, where ιX,n ∈

L (Xn, X) (respectively, πX,n ∈ L (X, Xn)) is a canonical embedding (respectively,
projection) of the topological direct product. For each linear mapping S : X → Y
there corresponds its infinite matrix [Smn] with Smn = πY,m ·S ·ιX,n. Undoubtedly,
if S ∈ L (X, Y ) then Smn ∈ L (Xn, Ym) for all n, m. We say that S is a triangular
operator if its matrix is lower (or upper) triangular, that is, Smn = 0 whenever
n > m (or n < m).

Now, let [Smn] be a lower triangular matrix, where Smn : Xn → Ym are
certain linear mappings. The latter matrix defines a linear mapping S : X → Y
by the rule

S (x) =
∑
m

ιY,m

(
m∑

n=1

Smn (πX,n (x))

)
.

Evidently, the matrix of the latter mapping S is reduced to the original matrix
[Smn].
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Lemma 4.1. Let [Smn] be a lower triangular matrix with Smn ∈ L (Xn, Ym). Then
the linear mapping S : X → Y induced by the matrix is continuous. If Z =

∏
n Zn,

[Tmn] is a lower triangular matrix with Tmn ∈ L (Yn, Zm), and T : Y → Z is the
induced linear mapping, then the matrix of TS is the product of the matrices [Tmn]
and [Smn].

Proof. To demonstrate the continuity of S, one suffices to prove that πY,mS is
continuous for all m. In order to show that πY,mS is continuous, it suffices to write
πY,mS =

∑
n≤m SmnπX,n and to observe that the sum of continuous mappings is

continuous.
Further, S ∈ L (X, Y ) and T ∈ L (Y,Z) are triangular operators due to the just
established fact. Moreover,

TS (x) =
∑
m

TιY,m

(
m∑

n=1

Smn (πX,n (x))

)
=

∑
m

∑
k≥m

ιZ,k

m∑
n=1

TkmSmn (πX,n (x))

=
∑

k

k∑
m=1

ιZ,k

m∑
n=1

TkmSmn (πX,n (x))

=
∑

k

ιZ,k

k∑
n=1

k∑
m=1

TkmSmn (πX,n (x)) =
∑

k

ιZ,k

k∑
n=1

Gkm (πX,n (x))

= G (x) ,

where [Gkm] is the product of the matrices [Tnm] and [Snm], G is the triangular
operator associated with [Gkm]. �

Proposition 4.2. Let X =
∏

n Xn, Y =
∏

n Yn, Z =
∏

n Zn, with the Fréchet spaces
Xn, Yn, Zn, n ∈ N, and let [Smn], [Tmn] be lower triangular operator matrices with
Smn ∈ L (Xn, Ym), Tmn ∈ L (Yn, Zm). Let us assume that the sequence

Z
T←− Y

S←− X (4.1)

is a chain complex, where S and T are the triangular operators induced by the ma-
trices [Smn] and [Tmn], respectively. If all Zn

Tnn←− Yn
Snn←− Xn are exact sequences

then so is (4.1).

Proof. Take y ∈ ker (T ). Then Ty =
∑

m ιZ,m (
∑m

n=1 Tmn (πY,n (y))) = 0. In par-
ticular, T11πY,1 (y) = 0. By assumption, there exists x1 ∈ X1 such that S11x1 =
πY,1 (y). But

S (ιX,1x1) =
∑
m

ιY,mSm1x1, y − SιX,1x1 =
∑
m≥2

ιY,m (ym − Sm1x1) .

By induction on n, let us prove that there exist elements xm ∈ Xm such that

y −
n∑

k=1

SιX,kxk =
∑
m>n

ιY,m

(
ym −

n∑
k=1

Smkxk

)
.
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By induction hypothesis,

y −
n−1∑
k=1

SιX,kxk =
∑

m>n−1

ιY,m

(
ym −

n−1∑
k=1

Smkxk

)
and

T

(
y −

n−1∑
k=1

SιX,kxk

)
= Ty −

n−1∑
k=1

TSιX,kxk = 0.

It follows that Tnn

(
yn −

∑n−1
k=1 Snkxk

)
= 0. Then again yn −

∑n−1
k=1 Snkxk =

Snnxn for a certain xn ∈ Xn, and

y −
n∑

k=1

SιX,kxk =
∑
m≥n

ιY,m

(
ym −

n−1∑
k=1

Smkxk

)
−

∑
m≥n

ιY,mSmnxn

=
∑

m≥n+1

ιY,m

(
ym −

n∑
k=1

Smkxk

)
.

Now, let x =
∑

k ιX,kxk ∈ X. Using Lemma 4.1, we deduce that

πY,n (y − Sx) = πY,n

(
y −

∑
k

SιX,kxk

)

= πY,n

(
y −

n∑
k=1

SιX,kxk

)
+ πY,n

⎛⎝ ∑
k≥n+1

SιX,kxk

⎞⎠
= πY,n

⎛⎝ ∑
m≥n+1

ιY,m

(
ym −

n∑
k=1

Smkxk

)⎞⎠ +
∑

k≥n+1

πY,nSιX,kxk

=
∑

k≥n+1

Snkxk = 0

for all n. Thus Sx = y. �

Corollary 4.3. Let [Smn] be a lower triangular matrix with Smn ∈ L (Xn, Xm). If
all operators Snn ∈ L (Xn) are invertible then the triangular operator S ∈ L (X)
induced by the matrix [Smn] is invertible.

Proof. One suffices to set Yn = Xn and Zn = 0 in Proposition 4.2 and apply the
open mapping theorem for the Fréchet spaces. �

4.2. The Global Complex Associated by the Local Complexes

Consider the Banach spaces X, Y , Z and let

T =
n∑

i=0

ei ⊗ Ti ∈ U (g) ⊗ L (Y, Z) , S =
n∑

i=0

ei ⊗ Si ∈ U (g) ⊗ L (X, Y )
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be (noncommutative) operator-valued polynomials, where e0 = 1. We associate
the sequence

Fg (U) ⊗̂Z
TU←− Fg (U) ⊗̂Y

SU←− Fg (U) ⊗̂X (4.2)
with the continuous operators

TU =
n∑

i=0

Rei
⊗ Ti and SU =

n∑
i=0

Rei
⊗ Si,

where U is an open subset in ∆ (g), Rei ∈ L (Fg (U)) is the right multiplication
operator. Assume that (4.2) is a chain complex, that is, TUSU = 0. Note that

TUSU =
n∑

i=0

Re2
i
⊗ TiSi +

∑
0≤i<j

Rejei
⊗ (TiSj + TjSi) +

∑
0<i<j

∑
k>j

ck
ijRek

⊗ TjSi

=
n∑

i=0

Re2
i
⊗ TiSi +

∑
0<i<j

Rejei
⊗ (TiSj + TjSi) +

m∑
j=1

Rej
⊗ (T0Sj + TjS0)

+
n∑

k=m+1

Rek
⊗

⎛⎝T0Sk + TkS0 +
∑

0<i<j<k

ck
ijTjSi

⎞⎠ .

Thus, the condition TUSU = 0 is equivalent to the following system of the operator
equations:

TiSi = 0, 0 ≤ i ≤ n, (4.3)
TiSj + TjSi = 0, 0 < i < j ≤ n,

TiS0 + T0Si = 0, 0 < i ≤ m,

TkS0 + T0Sk +
∑

1≤i<j<k ck
ijTjSi = 0, m + 1 ≤ k ≤ n.

Indeed, TUSU = 0 implies that TUSU (1 ⊗ x) = 0 for all x ∈ X.
Now, let

Ts =
m∑

i=0

zi ⊗ Ti ∈ L (Y, Z) [z1, . . . , zm] , Ss =
m∑

i=0

zi ⊗ Si ∈ L (X, Y ) [z1, . . . , zm] ,

be the operator-valued polynomials, where z0 = 1. Consider the following

Z
Ts(z)←− Y

Ss(z)←− X (4.4)

(polynomially) parametrized on ∆ (g)(= C
m) sequence of Banach spaces. Using

(4.3), we obtain that

Ts (z)Ss (z) =
m∑

i=0

ziTi

m∑
i=0

ziSi

=
m∑

i=0

z2
i TiSi +

∑
0<i<j

zizj (TiSj + TjSi) +
m∑

i=1

zi (TiS0 + T0Si)

= 0
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for each point z ∈ ∆ (g). Thus (4.4) is a parametrized chain complex (see [18,
Section 2]). We say that the global complex (4.2) is associated by the local complexes
(4.4) by means of the operator-valued polynomials T and S.

Now, take f ∈ Fg (U) ⊗̂Y . Since Fg (U) ⊗̂Y = O (U, Y ) [[er]] (see (3.1)), it
follows that f has a unique expansion f =

∑
Jr

fJr
eJr
r as formal power series with

fJr
∈ O (U, Y ). Fix a countable polydisk cover {Di} of the domain U , and let

FU,Y (v) = {gv = {g|Di
v}i : g ∈ O (U, Y )}

be a closed subspace in Fg (U) ⊗̂Y , v ∈ re. Confirm again that re is the linearly or-
dered countable set (Section 2) of all ordered radical monomials taken by the basis
e. Then Fg (U) ⊗̂Y =

∏
v∈re

FU,Y (v) (see (3.1)). Moreover, the linear mapping

TU :
∏
v∈re

FU,Y (v) →
∏
v∈re

FU,Z (v)

is represented by its operator matrix
(
T

(wv)
U

)
, where T

(wv)
U = πZ,wTU ιY,v ∈

L (FU,Y (v) ,FU,Z (w)), ιY,v : FU,Y (v) → Fg (U) ⊗̂Y is the canonical embedding
and πZ,w : Fg (U) ⊗̂Z → FU,Z (w) is the canonical projection (see Subsection 4.1).
The following lemma asserts that TU is a triangular operator.

Lemma 4.4. For each radical monomial v ∈ re, T
(wv)
U = 0 for all w, w ≺ v.

Moreover, T
(wv)
U = 0 for all w, w � v, except finitely many of them, and the

diagonal operator T
(v)
U = T

(vv)
U acts by the rule T

(v)
U

(
fv

)
= ∆U

(
f
)
v, where

∆U : O (U, Y ) → O (U,Z) , ∆U

(
f
)
(z) = Ts (z) f (z) ,

is a continuous linear mapping. In particular, the matrix
(
T

(wv)
U

)
of TU is lower

triangular.

Proof. First, we reduce the situation to the polydisk case. Take a simple function
f ⊗ y ∈ O (U, Y ) with f ∈ O (U), y ∈ Y . Then (f ⊗ y) v = fv ⊗ y ∈ FU,Y (v) and

TU (fv ⊗ y) =
n∑

k=0

fv ∗ ek ⊗ Tk (y) =
n∑

k=0

{f |Di
v ∗ ek}i ⊗ Tk (y)

=

{
n∑

k=0

f |Di
v ∗ ek ⊗ Tk (y)

}
i

= {TDi
(f |Di

v ⊗ y)}i ,

so, the family {TDi
(f |Di

v ⊗ y)}i is compatible. It follows that
{
TDi

(
f |Di

v
)}

i
is

a compatible family and TU

(
fv

)
=

{
TDi

(
f |Di

v
)}

i
for each absolutely convergent



Vol. 6 (2009) Fréchet Sheaves and Taylor Spectrum 193

series f =
∑

k fk ⊗ yk ∈ O (U, Y ). Indeed,

TU

(
fv

)
=

∑
k

TU (fkv ⊗ yk) =
∑

k

{TDi
(fk|Di

v ⊗ yk)}i

=

{∑
k

TDi
(fk|Di

v ⊗ yk)

}
i

=

{
TDi

(∑
k

fk|Di
v ⊗ yk

)}
i

=
{
TDi

(
f |Di

v
)}

i
.

Now fix a polydisk Di = Dai,ri
, take h ∈ O (Di, Y )(= O (Di) ⊗̂Y ) and v ∈ re.

For simplicity, we assume that ai = 0, that is, Di is a polydisk centered at zero.
Let h =

∑
Js

eJs
s ⊗ yJs

be the expansion of h in O (Di) ⊗̂Y ⊆ Fg (Di, Y ). Then
hv =

∑
Js

eJs
s v ⊗ yJs ∈ FDi,Y (v), and

∆Di

(
h
)
v =

m∑
k=0

∑
Js

∆ek

(
eJs
s

)
v ⊗ Tk (yJs

) ,

where ∆ek
is the insertion operator introduced in Section 2. Moreover, the range

of the continuous linear mapping

ADi
: FDi,Y (v) → Fg (Di) ⊗̂Z,

ADi

(
hv

)
=

n∑
k=m+1

∑
Js

eJs
s vek ⊗ Tk (yJs

) +
m∑

k=0

∑
Js

eJs
s [v, ek] ⊗ Tk (yJs

) ,

belongs to the finite sum
∑

w�v FDi,Z (w) (vek and [v, ek] are of linear combina-
tions of some ordered radical monomials w, w � v), that is, πZ,wADi

= 0 for all
w except finitely many of them. Further, one can easily check that

TDi

(
hv

)
=

n∑
k=0

∑
Js

eJs
s vek ⊗ Tk (yJs

) = ∆Di

(
h
)
v + ADi

(
hv

)
+

m∑
k=0

∑
Js

ej1
1 · · · ejk

k

[
e

jk+1
k+1 · · · ejm

m , ek

]
v ⊗ Tk (yJs) .

By using Lemma 2.1, we infer[
e

jk+1
k+1 · · · ejm

m , ek

]
=

n∑
t=m+1

pjk+1...jm,t (ek+1, . . . , em) et.

We set

GDi

(
hv

)
= TDi

(
hv

)
− ∆Di

(
h
)
v − ADi

(
hv

)
.

Then GDi
: FDi,Y (v) → Fg (Di) ⊗̂Z is a continuous linear mapping. Since each

etv (t > m) is a finite sum of some radical monomials w ∈ re, w � v, it follows
that πZ,wGDi

= 0 for all w, w � v, and πZ,wGDi
= 0 for all w, w � v, except
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finitely many of them. Moreover, GDi

(
hv

)
=

∑n
t=m+1 htetv, where

ht =
m∑

k=0

∑
Js

ej1
1 · · · ejk

k pjk+1...jm,s (ek+1, . . . , em) ⊗ Tk (yJs
) .

Thus,

TDi

(
hv

)
= ∆Di

(
h
)
v + ADi

(
hv

)
+ GDi

(
hv

)
= ∆Di

(
h
)
v +

∑
w∈M(v)

∆(w)
Di

(
h
)
w,

where ∆(w)
Di

∈ L (O (Di, Y ) ,O (Di, Z)) and M (v) is a finite subset in re comprising
some w, w � v.
Let us assume that h|Di∩Dj

= g|Di∩Dj
for some h ∈ O (Di, Y ), g ∈ O (Dj , Y ).

Then we have

∆Di

(
h
)
|Di∩Dj v +

∑
w∈M(v)

∆(w)
Di

(
h
)
|Di∩Dj w = TDi

(
hv

)
|Di∩Dj

= TDj (gv) |Di∩Dj = ∆Dj (g) |Di∩Dj v +
∑

w∈M(v)

∆(w)
Dj

(g) |Di∩Dj w.

It follows that ∆(w)
Di

(
h
)
|Di∩Dj

= ∆(w)
Dj

(g) |Di∩Dj
for all w ∈ M (v). Thus

TU

(
fv

)
= T

(v)
U

(
fv

)
+

∑
w∈M(v)

T
(wv)
U

(
fv

)
,

where fv ∈ FU,Y (v), and

T
(v)
U

(
fv

)
=

{
∆Di

(
f |Di

)
v
}

i
= ∆U

(
f
)
v, T

(wv)
U

(
fv

)
=

{
∆(w)

Di

(
f |Di

)
w

}
i
.

Therefore, πZ,wTιY,v = 0 for all w, w ≺ v, and πZ,wTιY,v = 0 for all w, w � v,
except finitely many of them. Thereby, T is a triangular operator with its diagonal
operators T

(v)
U , v ∈ re. �

Theorem 4.5. Let U be a (pseudo)convex domain in ∆ (g). If the local complexes
(4.4) are exact for all z ∈ U then so is the global complex (4.2).

Proof. First, note that (4.4) is an analytically parametrized on the domain U
Banach space complex (see [18]). Let

O (U,Z) Ts←− O (U, Y ) Ss←− O (U,X) (4.5)

be a sequence associated with (4.4), where

Ts =
m∑

i=0

Rzi
⊗ Ti and Ss =

m∑
i=0

Rzi
⊗ Si.

Since

Ts

(
f
)
(z) = Ts (z) f (z) and Ss (g) (z) = Ss (z) g (z) for all z ∈ U ,

from (4.3) it follows that the sequence (4.5) is a chain complex, i.e., TsSs = 0. More-
over, (4.5) turns out to be an exact sequence whenever the local complexes (4.4)
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are exact for all z ∈ U thanks to Taylor’s theorem on analytically parametrized
complexes (see [11, Corollary 2.1.9], [18, Theorem 2.2]). By Lemma 4.4, the oper-
ators

T : Fg (U) ⊗̂Y → Fg (U) ⊗̂Z and S : Fg (U) ⊗̂X → Fg (U) ⊗̂Y

have lower triangular operator matrices with their diagonal operators Tv

(
fv

)
=

Ts

(
f
)
v and Sv (gv) = Ss (g) v respectively, where f ∈ O (U, Y ), g ∈ O (U,X),

v ∈ re. Using Proposition 4.2, we conclude that (4.2) is an exact chain complex. �

5. Taylor Spectrum and Transversality

In this section we prove the main result of this paper: the resolvent set with respect
to Taylor spectrum of a supernilpotent Lie algebra of operators can be described
in terms of transversality of the Fréchet algebras of formally radical functions in
elements of a nilpotent Lie algebra.

First, we need some basic definitions of topological homology.

5.1. Resolutions, Transversality and Taylor Spectrum

Let A be a Fréchet algebra. The projective tensor product (over A) of Fréchet
modules X ∈ mod-A and Y ∈ A-mod is denoted by X⊗̂

A
Y . By definition, X⊗̂

A
Y is

the quotient space of X⊗̂Y with respect to the closed subspace generated by the
elements x · a ⊗ y − x ⊗ a · y, x ∈ X, y ∈ Y , a ∈ A. A module X ∈ A-mod is said
to be a free A-module if X = A⊗̂E for a certain Fréchet space E. The left module
structure on A⊗̂E is given by the rule: a · (b ⊗ e) = ab ⊗ e, a, b ∈ A, e ∈ E. A
module X ∈ A-mod is said to be a projective A-module if it is a module summand
of a certain free A-module. A chain complex

(X , d) : · · · ←− Xn−1
dn−1←− Xn

dn←− Xn+1 ←− · · ·
in the category A-mod is said to be admissible if it splits as a complex of Fréchet
spaces. A projective resolution of an A-module X is a complex (P, d) of left A-
modules with Pn = {0} for n < 0, together with a morphism ε : P0 → X such
that the augmented complex

0 ← X
ε←− P0

d0←− P1
d1←− · · ·

is admissible, and all Pn are projective modules. If F : A-mod → B-mod is
an additive functor then by Fn we denote the n-th projective derived functor
of F , where B is a Fréchet algebra. By its very definition, Fn (X) is just the n-th
homology of the complex (F (P) , F (d)) for a projective resolution (P, d) of the
module X. Taking into account that all projective resolutions of a module are
homotopy equivalent (see [14, 3.2.3]), we conclude that Fn (X) does not depend
on the particular choice of a projective resolution (P, d) of X. If F = X⊗̂

A
◦, then

we write TorA
n (X, ◦) instead of the n-th projective derived functor, as usual. We
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set F ⊥ X if Fn (X) = {0}, n ≥ 0. If F = X⊗̂
A
◦ then we write X ⊥A Y (see [20])

for Y ∈ A-mod if F ⊥ Y . In this case we say that the modules X and Y are in
the transversality relation. Note that X ⊥A Y iff (◦⊗̂

A
Y ) ⊥ X (see [14, 3.4.26]).

Now, let g be a finite-dimensional Lie algebra, X a Fréchet space and let
α : g → L (X) be a Lie representation, that is, X is a Fréchet g-module. The
following complex

0 ← X
d0←− X ⊗ g

d1←− · · · dp−1←− X ⊗ ∧pg
dp←− · · · ,

is called the Koszul complex of the pair (X, α), where

dp−1 (x ⊗ u) =
p∑

i=1

(−1)i+1
α (ui) x ⊗ ui +

∑
i<j

(−1)i+j−1
x ⊗ [ui, uj ] ∧ uij ,

u = u1 ∧ . . . ∧ up ∈ ∧pg, and it is denoted by Kos (X, α). Obviously, α − λ : g →
L (X) is a Lie representation for each λ ∈ ∆ (g). Recall that the Taylor spectrum
σ (g, X) of a g-module X is defined as a set of those λ ∈ ∆ (g) such that the Koszul
complex Kos (X, α − λ) fails to be exact (see [6], [12]).

Let U be a domain in ∆ (g) and let α : g → L (X) be a Lie representation
of g in a Banach space X. Then Fg (U) ⊗̂X turns out to be a g-module via the
representation

ρU,X : g → L
(
Fg (U) ⊗̂X

)
, ρU,X (u) (f ⊗ x) = f ⊗ α (u) x − f ∗ u ⊗ x,

f ∈ Fg (U) , x ∈ X, u ∈ g, that is, ρU,X (u) = 1 ⊗ Lα(u) − Ru ⊗ 1, u ∈ g. Consider
the “global” Koszul complex

Kos
(
Fg (U) ⊗̂X, ρU,X

)
: 0 ← Fg (U) ⊗̂X

TU←− Fg (U) ⊗̂X ⊗ g
TU←− · · ·

with the differential

TU (f ⊗ x ⊗ u) =
k+1∑
i=1

(−1)i+1
ρU,X (ui) (f ⊗ x) ⊗ ui

+
∑
i<j

(−1)i+j−1
f ⊗ x ⊗ [ui, uj ] ∧ ui,j ,

where u = u1 ∧ . . . ∧ uk+1. One can easily check that

TU (f ⊗ x ⊗ u) = f ⊗ T0 (x ⊗ u) +
k+1∑
i=1

(−1)i
f ∗ ui ⊗ x ⊗ ui, (5.1)

where T0 is the differential of the complex Kos (X, α). Fix the graded basis e =
(e1, . . . , en) and introduce the operators Ti ∈ L (X ⊗ ∧g) ,

Ti

(
x ⊗ ej1 ∧ . . . ∧ ejk+1

)
=

{
(−1)p

x ⊗ ej1 ∧ . . . ∧ êjp ∧ . . . ∧ ejk+1 if jp = i,
0 if jp �= i for all p,
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where 1 ≤ i ≤ n. Then (5.1) can be rewritten as

TU (f ⊗ x ⊗ e) = f ⊗ T0 (x ⊗ e) +
n∑

i=1

f ∗ ei ⊗ Ti (x ⊗ e) ,

that is, the differential TU ∈ L
(
Fg (U) ⊗̂ (X ⊗ ∧g)

)
has the following description

TU =
n∑

i=0

Rei
⊗ Ti

(see (4.2)). Now, we introduce the “local” parametrized Koszul complexes

Kos (X, α − z) , z ∈ U.

The differential of the complex Kos (X, α − z) is

Ts (z) =
m∑

i=0

ziTi

(z0 = 1) which is the value of the polynomial

Ts =
m∑

i=0

zi ⊗ Ti ∈ L (X ⊗ ∧g) [z1, . . . , zm]

at the point z. Thus the global complex Kos
(
Fg (U) ⊗̂X, ρU,X

)
is associated with

the local complexes Kos (X, α − z), z ∈ U , by means of the noncommutative
operator-valued polynomials

T =
n∑

i=0

ei ⊗ Ti ∈ U (g) ⊗ L (X ⊗ ∧g)

(see Subsection 4.2).
Now, we prove the main result of this paper: the Taylor spectrum of a left

Banach Fg-module can be completely determined in terms of the transversality.

Theorem 5.1. Let U be a (pseudo)convex domain in ∆ (g) and let X be a Banach g-
module. If the local complexes Kos (X, α − z), z ∈ U , are exact then so is the global
Koszul complex Kos

(
Fg (U) ⊗̂X, ρU,X

)
. Moreover, if X ∈ Fg-mod is a Banach

module then
Fg (U) ⊥Fg X ⇐⇒ U ∩ σ (g, X) = ∅

whenever U is a polydisk in ∆ (g).

Proof. The exactness of all local complexes Kos (X, α − z), z ∈ U , imply the ex-
actness of the global complex Kos

(
Fg (U) ⊗̂X, ρU,X

)
thanks to Theorem 4.5.

Now, assume that U = Da,r is a polydisk. For brevity, assume that a = 0, and put
D = Da,r. The complex Kos

(
Fg (D) ⊗̂Fg (D) , ρD

)
augmented by the multiplica-

tion mapping

πD : Fg (D) ⊗̂Fg (D) → Fg (D) , f ⊗ g �→ fg,
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is a free Fg (D)-bimodule resolution of the Fréchet algebra Fg (D) (see [5], [8]),
where ρD = ρD,Fg(D). Namely, the chain complex

0 ← Fg (D) πD←− Kos
(
Fg (D) ⊗̂Fg (D) , ρD

)
(5.2)

is admissible. Since all the members of the complex are free right Fg (D)-modules,
it follows that the complex splits as a complex in mod-Fg (D). In particular, so
is the complex 0 ← Fg

πCm←− Kos
(
Fg⊗̂Fg, ρCm

)
in mod-Fg (just put D = C

m).
Applying the functor ◦⊗̂

Fg

X to the latter complex, we obtain that the complex

0 ← X
πX←− Kos

(
Fg⊗̂X, ρCm,X

)
(5.3)

is admissible, that is, X has the free Koszul resolution in Fg-mod. With Fg ⊆
Fg (D) in mind, infer Fg (D) ∈ Fg-mod-Fg. Based upon the resolution (5.3), we
infer that Fg (D) ⊥Fg X iff the complex Fg (D) ⊗̂

Fg

Kos
(
Fg⊗̂X, ρCm,X

)
is exact.

Evidently,

Fg (D) ⊗̂
Fg

Kos
(
Fg⊗̂X, ρCm,X

)
= Kos

(
Fg (D) ⊗̂X, ρD,X

)
to within a topological isomorphism. Consequently, if D ∩ σ (g, X) = ∅ then
Kos (X, α − z) is exact for all z ∈ D, which in turn implies that the complex
Kos

(
Fg (D) ⊗̂X, ρD,X

)
remains exact (Theorem 4.5), that is, Fg (D) ⊥Fg X.

Conversely, assume that Fg (D) ⊥Fg X and take a point z ∈ D. As we have con-
firmed in Section 3 the point z determines a continuous character z : Fg (D) → C,
that is, Fg (D) is an augmented algebra. Consider the trivial Fg (D)-module C (z)
generated by z (see Section 2). Since the complex (5.2) is admissible as a complex
in Fg (D)-mod, it follows that the complex

0 ← C (z) ⊗̂
Fg(D)

Fg (D) ←− C (z) ⊗̂
Fg(D)

Kos
(
Fg (D) ⊗̂Fg (D) , ρD

)
is admissible. Taking into account that C (z) ⊗̂Fg (D) is identified with Fg (D), we
deduce that the latter complex is the following

0 ← C (z)
πC(z)←− Kos

(
Fg (D) , ρC(z),D

)
with πC(z) (f) = z (f) and ρC(z),D (u) (f) = u ∗ f − fz (u) = (u − z (u)) ∗ f . Thus
Kos

(
Fg (D) , ρC(z),D

)
is just the Koszul complex Kos (Fg (D) , Lg − z) associated

by the left multiplication representation Lg and the character z on Fg (D), and

0 ← C (z) z←− Kos (Fg (D) , Lg − z)

is an admissible complex of the right Fg-modules. Each member Fg (D) ⊗ ∧kg of
the complex Kos (Fg (D) , Lg) is a topological direct sum of Fg (D) copies. Being
◦⊗̂
Fg

X an additive functor, we deduce that (◦⊗̂
Fg

X) ⊥
(
Fg (D) ⊗ ∧kg

)
for all k

whenever Fg (D) ⊥Fg X (that is, (◦⊗̂
Fg

X) ⊥ Fg (D)). Then (◦⊗̂
Fg

X) ⊥ C (z) thanks

to [14, 3.3.8]. Consequently, C (z) ⊥Fg X, where C (z) is considered to be right
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Fg-module. Thus TorFg
n (C (z) , X) = {0} for all k ≥ 0.

Using again the same argument for the polydisk D = C
n, we obtain that the

complex
0 ← C (z) z←− Kos (Fg, Lg − z)

of the right Fg-modules is admissible, that is, Kos (Fg, Lg − z) is a free resolution
of the right Fg-module C (z). It follows that TorFg

n (C (z) , X), k ≥ 0, are the
homologies of the complex Kos (Fg, Lg − z) ⊗̂

Fg

X. But an easy calculation shows

that Kos (Fg, Lg − z) ⊗̂
Fg

X is just the Koszul complex Kos (X, α − z) of the g-

module X. Whence the complex Kos (X, α − z) is exact, which means that z /∈
σ (g, X). In particular, D ∩ σ (g, X) = ∅. �

Confirm that each Banach g-module X automatically turns out to be a left
module over the Arens-Michael envelope Og, that is, all noncommutative entire
functions in elements of g act on X (see [15, 5.2.21]). To complete our assertion
one might solve the problem when X turns out to be a Fg-module. Moreover, to
have a direct application to the operator theory it is better to formulate the result
in terms of the operator tuples rather than in terms of the modules.

Let X be a Banach space and let T = (T1, . . . , Tm) be a family of bounded
linear operators on X generating a finite-dimensional nilpotent Lie subalgebra gT

in L (X). If gT − λ is a Lie subalgebra in L (X) generated by the operator family
T − λ = (T1 − λ1, . . . , Tm − λm) , λi = λ (Ti), 1 ≤ i ≤ m, λ ∈ ∆ (gT ), then the
Taylor spectrum σ (T ) of the operator family T is defined as a set of those λ for
which the Koszul complex of the gT − λ-module X fails to be exact (see [12]).
As we have shown in Section 3 the Lie algebra gT is an epimorphic image of a
positively graded nilpotent Lie algebra g generated by m-elements e1, . . . , em, that
is, there exists a Lie epimorphism τ : g → gT such that τ (ei) = Ti, 1 ≤ i ≤ m.
Therefore the space X turns out to be a left Og-module. Take a triangular basis
e in g generated by e1, . . . , em and consider the Fréchet algebra Fg = Fg (∆ (g))
of all formally-radical entire functions in elements of g.

Proposition 5.2. The Banach space X turns out to be a left Fg-module iff gT is a
supernilpotent Lie subalgebra in L (X). Moreover, σ (T ) = σ (g, X).

Proof. Let us assume that X ∈ Fg-mod. Note that the topology of Fg is defined by

the system of seminorms
{
‖·‖t,Kr

}
, where ‖f‖t,Kr

= max {‖fJr‖t : Jr ≤ Kr} (see

(2.1)), f =
∑

Jr
fJre

Jr
r ∈ Fg. By assumption, there exists a (unique) continuous

algebra homomorphism τ̂ : Fg → L (X) extending τ . Thereby

‖τ̂ (f)‖L(X) ≤ C ‖f‖t,Kr

for a certain positive constant C and some seminorm ‖·‖t,Kr
. It follows that∥∥∥τ (er)

Ir
∥∥∥
L(X)

=
∥∥τ̂

(
eIr
r

)∥∥
L(X)

= 0 whenever |Ir| > |Kr|. But τ (er) generates

[gT , gT ], therefore gT is a supernilpotent Lie subalgebra in L (X).



200 A. Dosi Mediterr. J. Math.

Conversely, let us assume that gT is a supernilpotent Lie subalgebra in L (X).
Let B be an associative subalgebra in L (X) generated by [gT , gT ], and let τ :
Og → L (X) be the continuous algebra homomorphism extending τ . By Lemma
2.2, B is finite dimensional and Bk = 0 for some k. Then τ

(
eJr
r

)
= 0 for all Jr,

|Jr| > k (n − m). We set

τ̂ : Fg → L (X) , τ̂

(∑
Jr

fJre
Jr
r

)
=

∑
|Jr|≤k(n−m)

τ
(
fJre

Jr
r

)
,

which is a continuous algebra homomorphism. Whence X is a left Fg-module.
Finally, the equality of spectra follows from [12]. �

By using the main result Theorem 5.1 and Proposition 5.2, we derive the
following assertion.

Corollary 5.3. Let T = (T1, . . . , Tm) be a family of bounded linear operators on
a Banach space generating a supernilpotent Lie algebra in L (X). Then X turns
out to be a left Banach Fg-module for a certain nilpotent Lie algebra g and the
resolvent set C

m\σ (T ) with respect to the Taylor spectrum σ (T ) consists of those
λ ∈ C

m such that Fg (U) ⊥Fg X for a certain small polydisk U containing λ.
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