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noncommutative Banach algebra and prove that there is a correspondence
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1. Introduction

The regularities play an important role in the (joint) spectral theory of the Banach
algebra framework. They generalize the (joint) invertibility in a Banach algebra.
It is well known [13] that there is a close relationship between the spectral systems
and regularities. In [15] the characterization of those regularities in a commutative
Banach algebra related to subspectra has been proposed. A subspectrum in the
sense of Zelazko [22] on a commutative Banach algebra A is a set-valued mapping
over all tuples in A with the properties to be compact and polynomial spectral
mapping. In this paper we introduce a subspectrum on a unital (noncommutative)
Banach algebra based upon the properties to be compact and spectral mapping
with respect to the noncommutative polynomials (see below Section 3), and es-
tablish a correspondence between them and regularities. In the noncommutative
case, a subspectrum on A can be determined in terms of Lie algebras generated by
the tuples a = (a1, . . . , ak) ∈ Ak in A using a fixed Banach space representation
α : A→ B (X) [8]. To conduct that approach, one might demand a restrictive con-
dition concerning the Banach algebra A. We meet with the known phenomena [8]
when a tuple of noncommutative polynomials p(a) = (p1(a), . . . , pm (a)) ∈ Am in
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elements of a k-tuple a ∈ Ak generating a finite dimensional nilpotent Lie subalge-
bra L (a) ⊆ A, may generate an infinite dimensional Lie subalgebra L (p (a)) ⊆ A.
To avoid these type of problems, we shall assume that A is a nilpotent Lie al-
gebra, that is, its Lie algebra structure determined by the Lie multiplication
[a, b] = ab − ba, a, b ∈ A, is nilpotent (see Section 6). Such algebra A admits
sufficiently many subspectra. So are Slodkowski, Taylor spectra

σπ,n (a) = σπ,n (π(a1), . . . , π (ak)) , σδ,n (a) = σδ,n (π(a1), . . . , π (ak)) , n ≥ 0,

and Harte type spectrum σR (a) for tuples a in A. Thus if τ is one of these spectra,
then τ (a) is a nonempty compact subset in Ck for a k-tuple a in A, τ (x) is a
subset of the usual spectrum σ (x) for a singleton x ∈ A, and if p (a) is a m-tuple
of noncommutative polynomials in elements of a k-tuple a, then

τ (p (a)) = p (τ (a))

(see [8] and Proposition 6.5). The assumption on A to be a nilpotent Lie algebra is
also sustained by the noncommutative functional calculus problem [9]. In Propo-
sition 6.6 we show that the closed associative envelopes of a supernilpotent Lie
subalgebra g (that is, its commutator [g, g] consists of nilpotent elements) possess
that property. But an operator tuple a in B (X) generating a supernilpotent Lie
subalgebra g ⊆ B (X) admits [9], [6], [7] a noncommutative holomorphic functional
calculus in a neighborhood of the Taylor spectrum σT (a), which extends Taylor
functional calculus [19]. Thus a noncommutative Banach algebra A which is nilpo-
tent as a Lie algebra has all the favorable spectral properties just as commutative
Banach algebras.

A regularity R in a unital Banach algebra A is defined as a nonempty subset
R ⊆ A such that ab ∈ R iff a, b ∈ R (see Section 4). Each regularity automatically
involves a set KR of characters ϕ of A such that R ∩ ker (ϕ) = ∅, and the closed
two-sided ideal

R (A) =
⋂

{ker (ϕ) : ϕ ∈ KR}
called the R-radical of A. The set

R# = A\
⋃

{ker (ϕ) : ϕ ∈ KR}
is called an envelope of R. A regularity R having an open proper envelope R# is
of importance in our consideration. Such regularities appear when we deal with
subspectra. Namely, a subspectrum τ on A associates a regularity Rτ in A given
by the rule

Rτ = {a ∈ A : 0 /∈ τ (a)} .

In this case, Rτ is a nonempty open proper subset in A and R#
τ = Rτ (see [15] for

the commutative case). A key role in the noncommutative case plays the τ -radical
Radτ A of A associated to a subspectrum τ on a Banach algebra A. According to
the definition

Radτ A = {a ∈ A : τ (a) = {0}} .
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It is proved (see Corollary 4.9) that Radτ A is a closed two-sided ideal in A which
contains the Jacobson radical RadA, and A is commutative modulo Radτ A. More-
over, τ determines a subspectrum τ∼ on the quotient algebra A/Radτ A. Thus τ∼

is a subspectrum in the sense of Zelazko on the commutative (semisimple) Banach
algebra A/Radτ A. Furthermore, τ generates a compact subset Kτ of the character
space Char (A) of A such that

τ (a1, . . . , ak) = {(ϕ (a1) , . . . , ϕ (ak)) : ϕ ∈ Kτ}
for a k-tuple (a1, . . . , ak) in A.

The process of generating regularities from subspectra can be reversed (see
Section 5). Namely, fix a regularity R in A with its open proper envelope R#; one
may define a Harte type spectrum σR on A by the rule

σR (a) =
{
λ ∈ C

k : A (a− λ) ∩R# = ∅} ,
where a is a k-tuple in A and A (a− λ) is the left ideal in A generated by the tuple
a− λ. One can prove that the left ideal in the definition of σR (a) can be replaced
with the right ideal (a− λ)A generated by a− λ, and σR is a subspectrum on A.
Moreover,

RσR = R#

and the σR-radical is reduced to the R-radical, that is,

RadσR A = R (A) .

Thus the correspondence τ → Rτ between subspectra on A and regularities in A
has a right inverse R → σR. Furthermore τ ⊆ σRτ . In the commutative case that
relation has been observed in [15]. Note that, in general τ �= σRτ . We investigate
that difference in Section 6 by proposing necessary and sufficient condition when
the latter inclusion turns out to be an equality.

2. Preliminaries

All considered linear spaces are assumed to be complex and C denotes the field
of all complex numbers. For a unital associative algebra A, Rad (A) denotes its
Jacobson radical and A∗ the space of all linear functionals. A unital algebra homo-
morphism λ : A→ C is said to be a character of A, and the set of all characters of
A is denoted by Char (A). If S is a subset of an associative algebra A, then A (S)
(respectively, (S)A) denotes the left (respectively, right) ideal in A generated by
S. The group of all invertible elements in A is denoted by G (A). If A is a Ba-
nach algebra, then as it is well known [4, 1.2], G (A) is an open subset in A and
Char (A) is a compact space with respect to the weak∗-topology in the space of
all bounded linear functionals on A. We use the denotation σ (a) for the spectrum
of an element a ∈ A. The Banach algebra of all bounded linear operators on a
Banach space X is denoted by B (X). If π : A→ B is an algebra homomorphism,
then π(n) : An → Bn denotes the mapping π(n) (a1, . . . , an) = (π (a1) , . . . , π (an))
between the n-tuples in A and B.
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The following assertion is a well known [14] fact.

Theorem (Gleason, Kahane, Zelazko). Let A be a unital Banach algebra and let
ϕ : A → C be a linear functional such that ϕ (1) = 1 and ϕ (a) �= 0 for all
a ∈ G (A). Then ϕ ∈ Char (A).

Now let Fn (e) be the free associative algebra generated by n elements

e = (e1, . . . , en) .

Each its element p (e) is a noncommutative polynomial p (e) =
∑

ν ανe
ν , where

αν ∈ C and eν = ej1 · · · ejk
for a finite sequence ν = (j1, . . . , jk) of elements from

the set {1, . . . , n}. For a n-tuple a = (a1, . . . , an) ∈ An in a unital associative
algebra A, we have a well defined algebra homomorphism

Γa : Fn (e) → A

such that Γa (ei) = ai for all i. If p (e) ∈ Fn (e) is a free polynomial, then
Γa (p (e)) = p (a) is the same polynomial in A taken by a. Indeed,

Γa (p (e)) = Γa

(
∑

ν

ανe
ν

)
=

∑

ν

ανa
ν = p (a) .

We say that Γa is a polynomial calculus for the tuple a. Similarly, each element
λ = (λ1, . . . , λn) ∈ Cn determines a character Γλ : Fn (e) → C such that Γλ (ei) =
λi for all i. We say that Γλ is a point calculus. Actually, each character of Fn (e)
is a point calculus. We put

p (λ) = Γλ (p (e)) .

If p (e) = (p1 (e) , . . . , pm (e)) is a m-tuple in Fn (e) and λ ∈ Cn, then we write
p (λ) to indicate the m-tuple (p1 (λ) , . . . , pm (λ)) ∈ Cm in C.

Now let A be a unital Banach algebra and let B be a unital subalgebra of A.
Consider the family IA (B) of all left ideals I in B such that I ∩ G (A) = ∅. The
following assertion was proved in [10] (see also [23]).

Theorem 2.1. If aBa−1 ⊆ B for all a ∈ B ∩ G (A), then IA (B) possesses the
projection property, that is, for each mutually commuting k-tuple b = (b1, . . . , bk)
in I ∈ IA (B) and c ∈ B commuting with b there correspond λ ∈ C and J ∈ IA (B)
such that (b1, . . . , bk, c− λ) ∈ Jk+1.

We shall apply (as in [15]) Theorem 2.1 to the following particular case. Let
A = C (K) be the Banach algebra of all complex continuous functions on a compact
topological spaceK furnished with the uniform norm ‖f‖∞=sup {|f (x)| : x ∈ K},
and let B be a unital subalgebra of A. For a commutative tuple a ∈ Bk we put

τ (a) =
{
λ ∈ C

k : B (a− λ) ∩G (C (K)) = ∅} , (2.1)

which is a compact subset in Ck. On account of Theorem 2.1, we infer that τ
possesses the projection property, that is, if a = (a1, . . . , ak+1) ∈ Bk+1 is a k + 1-
tuple and a′ = (a1, . . . , ak), then τ (a′) = π (τ (a)), where π : C

k+1 → C
k is the
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canonical projection onto the first k coordinates. Actually, the projection property
involves (see [10]) the polynomial spectral mapping property

τ (p (a)) = p (τ (a)) ,

where p is a family of polynomials in several complex variables. In this case it is
said that τ is a subspectrum on B (see below Section 3). Thus (2.1) determines a
subspectrum on B. This type of subspectra were characterized by A. Wawrzynczyk
in [23].

Finally, if A is an associative algebra, then it is also a Lie algebra with respect
to the canonical Lie multiplication [a, b] = ab − ba, a, b ∈ A. To indicate this Lie
algebra structure we use the denotation Alie, thus Alie is the same algebra A
considered with respect to the Lie multiplication called the attendant Lie algebra.
Let us recall that a Lie algebra L is said to be nilpotent if its lower central series{
L(n)

}
n∈N

(where L(n) =
[
L,L(n−1)

]
) is vanishing, that is, L(k) = {0} for a

certain k. Thus each operator adx : L → L, (adx) (y) = [x, y] (x ∈ L) of the
adjoint representation is nilpotent. If k = 1, the Lie algebra L is commutative. A
finite-dimensional nilpotent Lie algebra L with L(2) = {0} is called a Heisenberg
algebra. A typical example is a Lie algebra g with a basis e1, e2, e3 such that
[e1, e2] = e3 and [ei, e3] = 0 for all i. Further, note that A(1)

lie = [A,A] = A(1) and

A
(n)
lie =

[
A,A

(n−1)
lie

]
=

[
A,A(n−1)

]
= A(n), n > 1.

Let A be a unital associative algebra. A subalgebra B ⊆ A is said to be an
inverse closed subalgebra if any invertible in A element of B is invertible in B. Since
the inverse closed subalgebras are stable with respect to arbitrary intersections, it
can be defined an inverse closed envelope of a subset in A.

The following assertion is well known [20], [1].

Lemma (Turovskii). Let A be a unital Banach algebra which is the closure of
the inverse closed envelope of a (not necessarily finite-dimensional) nilpotent Lie
algebra. Then A is commutative modulo its Jacobson radical RadA. In particular,
so is a Banach algebra A with its nilpotent attendant Lie algebra Alie.

Note that the closed associative envelope in A generated by Alie is obviously
reduced to the whole algebra A. Therefore if Alie is a nilpotent Lie algebra, then
A as a closed associative envelope of Alie is commutative modulo the Jacobson
radical thanks to Turovskii’s lemma.

3. Subspectra

In this section we consider purely algebraic case. We introduce a subspectrum in a
noncommutative algebra and show that it generates a subspectrum on the quotient
algebra modulo suitable radical.
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Let A be a unital associative algebra. As in the commutative case [21], a sub-
spectrum τ on A is a mapping which associates to every k-tuple a = (a1, . . . , ak) ∈
Ak a nonempty compact set τ (a) ⊆ Ck such that τ (a) ⊆

k∏
i=1

σ (ai) and it possesses

the spectral mapping property

τ (p (a)) = p (τ (a)) (3.1)

for an m-tuple p (e) = (p1 (e) , . . . , pm (e)) ∈ Fk (e)m. Of course, we have assumed
that the usual spectrum σ (a) of each element a ∈ A is nonvoid. That is true
whenever A is a Banach algebra. Note that the equality (3.1) establishes a relation
between the polynomial calculus Γa and point calculi Γλ, λ ∈ τ (a). Namely,

p (τ (a)) = {p (λ) : λ ∈ τ (a)} =
{

Γ(m)
λ (p (e)) : λ ∈ τ (a)

}
= τ

(
Γ(m)

a (p (e))
)

.

For subspectra τ and σ on A we put τ ⊆ σ if τ (a) ⊆ σ (a) for all tuples a in A.
Now let τ be a subspectrum on A. We put

Radτ (A) = {a ∈ A : τ (a) = {0}} .
We say that Radτ (A) is the τ -radical in A.

Lemma 3.1. Let τ be a subspectrum on A. Then Radτ (A) is a two-sided ideal in
A and the quotient algebra A/Radτ (A) is commutative. Moreover,

Rad (A) ⊆ Radτ (A) ,

and the inclusion turns out to be an equality whenever τ (a) = σ (a) for all a ∈ A.

Proof. By assumption, τ (a) ⊆ σ (a) is a nonempty subset for each a ∈ A. There-
fore τ (a) = {0} if σ (a) = {0}. Take a ∈ Rad (A). Then λ − a is invertible in A
for all λ, λ �= 0 (see [5, 8.6.3]). It follows that σ (a) = {0}, that is, a ∈ Radτ (A).
Thus Rad (A) ⊆ Radτ (A).

Take a, b ∈ Radτ (A). Then

τ (a+ b) = {λ+ µ : (λ, µ) ∈ τ (a, b)}
and τ (a, b) ⊆ τ (a) × τ (b) = {0}. Whence τ (a+ b) = {0} and a+ b ∈ Radτ (A).
Using a similar argument, we conclude that ca, ac ∈ Radτ (A) for any c ∈ A.
Thus Radτ (A) is a two-sided ideal in A. Now take a, b ∈ A and let p (e1, e2) =
e1e2 − e2e1 ∈ F2 (e). Then p (a, b) = [a, b] ∈ A and

τ (p (a, b)) = p (τ (a, b)) = {λµ− µλ : (λ, µ) ∈ τ (a, b)} = {0} .

Hence [a, b] ∈ Radτ (A) and therefore A is commutative modulo Radτ (A). �

Consider the quotient linear mapping

πτ : A→ A/Radτ (A) πτ (a) = a∼.

If a = (a1, . . . , ak) is a k-tuple in A, then a∼ = (a∼1 , . . . , a
∼
k ) = π

(k)
τ (a) is a k-tuple

in A/Radτ (A).



Vol. 61 (2008) Regularities 347

Lemma 3.2. Let τ be a subspectrum on A. Then to each k-tuple a∼ = (a∼1 , . . . , a
∼
k )

in A/Radτ (A) there corresponds a subset τ∼ (a∼) ⊆ Ck such that

τ∼ (a∼) = τ (b)

for a k-tuple b = (b1, . . . , bk) ∈ Ak with a∼i = b∼i for all i.

Proof. One has to prove that τ (a+ x) = τ (a) for any k-tuple x = (x1, . . . , xk) in
Radτ (A). Take λ ∈ τ (a). Then (λ, µ) ∈ τ (a, x) for some µ ∈ Ck. But µ ∈ τ (x) ⊆
k∏

i=1

τ (xi) = {0} and λ+µ ∈ τ (a+ x), that is, λ ∈ τ (a+ x). Thus τ (a) ⊆ τ (a+ x).

Since −x ∈ Radτ (A)k, it follows that τ (a+ x) ⊆ τ (a+ x− x) = τ (a). It remains
to put τ∼ (a∼) = τ (a). �

Lemma 3.3. Let τ be a subspectrum on A. Then τ∼ (a∼) ⊆ σ (a∼) for a singleton
a ∈ A, where σ (a∼) is the usual spectrum of a∼ in the algebra A/Radτ (A).

Proof. If λ /∈ σ (a∼), then (a− λ) b = 1+x for some x ∈ Radτ (A) and b ∈ A. But
τ ((a− λ) b) = τ (1 + x) = {1} and

τ ((a− λ) b) = {zw : (z, w) ∈ τ (a− λ, b)} .
Then 0 /∈ τ (a− λ), for in the contrary case (0, w) ∈ τ (a− λ, b) for some w ∈ C,
which in turn implies that 0 = 0w ∈ τ ((a− λ) b). So, λ /∈ τ (a). On account of
Lemma 3.2, τ∼ (a∼) = τ (a) ⊆ σ (a∼). Whence λ /∈ τ∼ (a∼). �

Using Lemmas 3.2 and 3.3, we obtain that

τ∼ (a∼1 , . . . , a
∼
k ) = τ (a1, . . . , ak) ⊆

k∏

i=1

τ (ai) =
k∏

i=1

τ (a∼i ) ⊆
k∏

i=1

σ (a∼i )

is a nonempty compact subset.

Theorem 3.4. Let τ be a subspectrum on a unital associative algebra A. The corre-
spondence τ∼ over all tuples in A/Radτ (A) is a subspectrum on the commutative
algebra A/Radτ (A).

Proof. Take a k-tuple a∼ = (a∼1 , . . . , a
∼
k ) in A/Radτ (A) and a noncommutative

polynomial p (e) =
∑

ν ανe
ν ∈ Fk (e). Then

p (a∼) = Γa∼ (p (e)) =
∑

ν

αν (a∼)ν =
∑

ν

ανπ
(k)
τ (a)ν =

∑

ν

ανπτ (aν)

= πτ

(
∑

ν

ανa
ν

)
= πτ (Γa (p (e))) = p (a)∼ .

If p (e) = (p1 (e) , . . . , pm (e)) is a m-tuple in Fk (e), then

τ∼ (p (a∼)) = τ∼ (p (a)∼) = τ (p (a)) = p (τ (a)) = p (τ∼ (a∼)) .

It remains to appeal to Lemmas 3.1, 3.2 and 3.3. �



348 Dosiev IEOT

In particular, if τ is a subspectrum on a Banach algebra A and Radτ (A) is
closed, then τ∼ is a subspectrum on the commutative Banach algebraA/Radτ (A).
In the next section we prove that Radτ (A) is closed for each subspectrum on a
Banach algebra A.

Definition 3.5. Let τ be a subspectrum on a unital associative algebra A. We say
that a subspace I ⊆ A is τ -singular if 0 ∈ τ (c) for any tuple c ∈ Ik, k ∈ N. A linear
functional ϕ ∈ A∗ is said to be a τ -singular if its kernel ker (ϕ) is a τ -singular
subspace in A. The set of all τ -singular functionals on A is denoted by Kτ .

The concept of a τ -singular subspace is motivated by the key reasoning in
[15, Lemma 2.3] for the commutative Banach algebra case.

The following simple lemma will be useful later.

Lemma 3.6. If I ⊆ A is a τ-singular subspace, then 1 /∈ I.

Proof. Being τ (1) ⊆ σ (1) = {1} a nonempty subset, we conclude that τ (1) = {1}.
Then 0 /∈ τ (1) and therefore 1 /∈ I. �
Proposition 3.7. Each τ-singular subspace in A is annihilated by a τ-singular func-
tional on A.

Proof. Let I is a τ -singular subspace in A. One has to prove that ϕ (I) = {0}
for a certain τ -singular functional ϕ ∈ A∗. Consider a family E of all τ -singular
subspaces F ⊆ A such that I ⊆ F , that is, 0 ∈ τ (c) for any tuple c = (c1, . . . , ck) ∈
F k, k ∈ N (Definition 3.5). If {Fα} is a linearly ordered family in E , then ∪αFα ∈ E .
By Zorn’s lemma, there is a maximal element in E , say J . By Lemma 3.6, 1 /∈ J .

Let us prove thatA = J⊕C1. If the latter does not hold, then Cu∩(J ⊕ C1) =
{0} for a certain u ∈ A, that is, J ∩ (Cu⊕ C1) = {0}. Let c = (c1, . . . , ck) ∈ Jk

be a k-tuple in J , and let (c, u) = (c1, . . . , ck, u) ∈ Ak+1. Since 0 ∈ τ (c), it follows
that (0, λ) ∈ τ (c, u) or 0 ∈ τ (c, u− λ) for some λ ∈ C. Thus

K (c) = {µ ∈ C : 0 ∈ τ (c, u− µ)}
is a nonempty compact subset in C. Using (3.1) (namely, the Projection Property),
we obtain that K (c, b) ⊆ K (c) ∩ K (b) for all tuples c, b in J . Hence there is a
common point λ0 ∈ K (c) for all tuples c in J . Put x = u− λ01 ∈ Cu ⊕ C1. Thus
x /∈ J and 0 ∈ τ (c, x) for all tuples c in J . Consider the subspace J = J⊕Cx ⊆ A.
If c+ξx = (c1 + ξ1x, . . . , ck + ξkx) ∈ J

k
(herein ξ = (ξ1, . . . , ξk) ∈ Ck) is a k-tuple

in J , then
τ (c+ ξx) = {λ+ µξ : (λ, µ) ∈ τ (c, x)} ,

which in turn implies that 0 ∈ τ (c+ ξx). Thus J ∈ E and J �= J , a contradiction.
Consequently, A = J ⊕ C1, that is, J = ker (ϕ) for some ϕ ∈ A∗. But ϕ is a

τ -singular functional, for J ∈ E . It remains to note that I ⊆ J . �
Now let τ be a subspectrum on A and let

Rτ = {a ∈ A : 0 /∈ τ (a)} . (3.2)

Note that Rτ ∩ ker (ϕ) = ∅ for each ϕ ∈ Kτ .
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Corollary 3.8. A\Rτ =
⋃ {ker (ϕ) : ϕ ∈ Kτ}.

Proof. Take a ∈ A\Rτ . Then 0 ∈ τ (a). Consider the subspace Ca in A generated
by a and let ξa = (ξ1a, . . . , ξka) be a k-tuple in Ca, where ξ = (ξ1, . . . , ξk) ∈
Ck. Let pi (e) = ξie, 1 ≤ i ≤ k, be polynomials in F1 (e), and let p (e) =
(p1 (e) , . . . , pk (e)) ∈ F1 (e)k. Then

τ (ξa) = τ (p (a)) = p (τ (a)) = {p (λ) : λ ∈ τ (a)} = {λξ : λ ∈ τ (a)} ⊆ C
k.

In particular, 0 ∈ τ (ξa), that is, Ca is a τ -singular subspace in A. By Proposition
3.7, a ∈ ker (ϕ) for some τ -singular functional ϕ ∈ A∗. Thus a ∈ ker (ϕ) for some
ϕ ∈ Kτ . �

Corollary 3.9. If τ is a subspectrum on A, then

Radτ (A) =
⋂

{ker (ϕ) : ϕ ∈ Kτ} .

Proof. Take a /∈ Radτ (A). Then λ ∈ τ (a) for some nonzero λ ∈ C, that is,
0 ∈ τ (a− λ). The latter means that a−λ ∈ A\Rτ . Using Corollary 3.8, infer that
a − λ ∈ ker (ϕ) for some ϕ ∈ Kτ . It follows that ϕ (a) = λϕ (1) �= 0 by virtue of
Lemma 3.6. Thereby a /∈ ker (ϕ). So,

⋂
{ker (ϕ) : ϕ ∈ Kτ} ⊆ Radτ (A) .

Conversely, take a /∈ ker (ϕ) for some ϕ ∈ Kτ . Then ϕ (a) �= 0 and

ϕ
(
a− ϕ (a)ϕ (1)−1

)
= ϕ (a) − ϕ (a)ϕ (1)−1

ϕ (1) = 0,

that is, a− ϕ (a)ϕ (1)−1 ∈ ker (ϕ) (see Lemma 3.6). Since ϕ ∈ Kτ , it follows that
0 ∈ τ

(
a− ϕ (a)ϕ (1)−1

)
. This in turn implies that ϕ (a)ϕ (1)−1 ∈ τ (a), that is,

τ (a) �= {0} or a /∈ Radτ (A). Thus Radτ (A) ⊆ ⋂ {ker (ϕ) : ϕ ∈ Kτ}. �

Corollary 3.10. Let τ be a subspectrum on A. Then τ∼ is a subspectrum on the
algebra A/Radτ (A) with the properties πτ (Rτ ) = Rτ∼ and π∗

τ (Kτ∼) = Kτ , where

π∗
τ : (A/Radτ (A))∗ → A∗

is the dual of the quotient mapping πτ : A→ A/Radτ (A).

Proof. Using Lemma 3.1, infer that A/Radτ (A) is commutative. Moreover, τ∼ is
a subspectrum on A/Radτ (A) as we have shown in Theorem 3.4. The equality
πτ (Rτ ) = Rτ∼ follows directly from (3.2) and Lemma 3.2.

Now take ψ ∈ Kτ∼ and put ϕ = ψ · πτ . If a is a k-tuple in ker (ϕ), then a∼

is a k-tuple in ker (ψ) and 0 ∈ τ∼ (a∼) = τ (a) by virtue of Lemma 3.2. Thus ϕ
is a τ -singular functional. Therefore π∗

τ (Kτ∼) ⊆ Kτ . Conversely, take ϕ ∈ Kτ . By
Corollary 3.9, ϕ = ψ · π for some ψ ∈ (A/Radτ (A))∗. Again by Lemma 3.2, ψ is
τ∼-singular. �
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A result of Zelazko [22] asserts that for each subspectrum τ on a commutative
Banach algebra B there corresponds a unique compact subset K ⊆ Char (B) such
that τ (a) =

{
ϕ(k) (a) : ϕ ∈ K

}
for any k-tuple a in B. In the pure algebraic

context this result has the following generalization.

Theorem 3.11. Let τ be a subspectrum on a unital associative algebra A. Then

τ (a1, . . . , ak) = {(ϕ (a1) , . . . , ϕ (ak)) : ϕ ∈ Kτ}
for all tuples (a1, . . . , ak) in A, where ϕ = ϕ (1)−1

ϕ (see Lemma 3.6).

Proof. Let a = (a1, . . . , ak) and take µ ∈ τ (a). Then 0 ∈ τ (a− µ). Consider a
subspace F in A generated by a − µ. Each element of F has the form p (a− µ)
for some p (e) ∈ Fk (e) such that p (0) = 0. Using the Spectral Mapping Property
(3.1), we conclude that F is a τ -singular subspace in A. On account of Proposition
3.7, F ⊆ ker (ϕ) for some τ -singular functional ϕ ∈ A∗. Thus ϕ (ai − µi) = 0
or ϕ (ai) = µiϕ (1), 1 ≤ i ≤ k. It follows that ϕ (ai) = µi or ϕ(k) (a) = µ.
Conversely, take ϕ ∈ Kτ . Then ai − ϕ (ai) ∈ ker (ϕ) for all i. Being ϕ a τ -singular
functional, we deduce that 0 ∈ τ

(
a− ϕ(k) (a)

)
or ϕ(k) (a) ∈ τ (a). Thus τ (a) ={

ϕ(k) (a) : ϕ ∈ Kτ

}
. �

4. Regularities

In this section we introduce regularities in a unital associative algebra and inves-
tigate their properties.

Let A be a unital associative algebra and let R be a nontrivial subset in A.
As in [15], we introduce the envelope R# of R in A as

A\R# =
⋃

{ker (ϕ) : ϕ ∈ A∗, R ∩ ker (ϕ) = ∅} .
By its very definition, R ⊆ R#.

Lemma 4.1. R## = R#.

Proof. Since R# ⊆ R##, it suffices to prove that R## ⊆ R#. Take a ∈ A\R#.
Then a ∈ ker (ϕ), R ∩ ker (ϕ) = ∅, for some ϕ ∈ A∗. But ker (ϕ) ⊆ A\R#, that is,
ker (ϕ) ∩R# = ∅. The latter in turn implies that a ∈ A\R##. �

The following definition plays a key role in our consideration.

Definition 4.2. Let A be a unital algebra. A nonempty subset R ⊆ A is said to be
a regularity in A if it possesses the following property

ab ∈ R iff a, b ∈ R.

The following two assertions provide us with examples of regularities.

Lemma 4.3. The set G (A) of all invertible elements in a unital algebra A is a
regularity in A whenever A is commutative modulo its Jacobson radical. Moreover,
G (A) = G (A)# if A is a Banach algebra.
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Proof. If a, b ∈ A, then σ (ab) = σ ((ab)∼), where (ab)∼ is the image of ab in
the commutative algebra A/Rad (A). But (ab)∼ = a∼b∼. Therefore, 0 /∈ σ (ab)
iff both a∼ and b∼ are invertible in A/Rad (A). Thus 0 /∈ σ (a∼) = σ (a) and
0 /∈ σ (b∼) = σ (b), that is, a, b ∈ G (A). Thus G (A) is a regularity in A.

Now assume that A is a Banach algebra. Take a /∈ G (A). Then a∼ is not
invertible in A/Rad (A) and therefore belongs to a maximal ideal I of A/Rad (A).
But I = ker (φ) for some character φ of the commutative algebra A/Rad (A) [4,
1.3.2]. It follows that a ∈ ker (ϕ), where ϕ = φπ ∈ Char (A). But G (A)∩ker (ϕ) =
∅. Therefore a /∈ G (A)#. Thus G (A) = G (A)#. �

Proposition 4.4. Let τ be a subspectrum on A and let Rτ = {a ∈ A : 0 /∈ τ (a)}
(see (3.2)). Then Rτ is a regularity in A and Rτ = R#

τ .

Proof. With τ (0) = {0} in mind, infer 0 /∈ Rτ . Moreover, 1 ∈ Rτ , for τ (1) ⊆
σ (1) = {1}. Thus ∅ �= Rτ �= A. Using Corollary 3.8, we obtain that

A\Rτ =
⋃

{ker (ϕ) : ϕ ∈ Kτ} .
But

⋃ {ker (ϕ) : ϕ ∈ Kτ} ⊆ A\R#
τ , that is, A\Rτ ⊆ A\R#

τ . Thus Rτ = R#
τ .

Since τ (ab) = {λµ : (λ, µ) ∈ τ (a, b)}, it follows that 0 /∈ τ (ab) iff 0 /∈ τ (a)
and 0 /∈ τ (b). Whence Rτ is a regularity in A. �

Now let us prove the main result of this section.

Theorem 4.5. Let R be a regularity in A. Then G (A) ⊆ R. Moreover, if A is a
Banach algebra and ϕ ∈ A∗ is such that R∩ker (ϕ) = ∅, then ker (ϕ) = ker (φ) for
some φ ∈ Char (A). In particular,

A\R# =
⋃

{ker (ϕ) : ϕ ∈ Char (A) , R ∩ ker (ϕ) = ∅} .
Proof. Take a ∈ R. Then a = a · 1 ∈ R and therefore 1 ∈ R. Further, if a ∈ G (A),
then 1 = aa−1 ∈ R, which in turn implies that a ∈ R. Thus G (A) ⊆ R.

Now suppose A is a Banach algebra and let ϕ ∈ A∗ such that R∩ker (ϕ) = ∅.
Taking into account that G (A) ⊆ R, we obtain G (A) ∩ ker (ϕ) = ∅. Using the
Gleason-Kahane-Zelazko theorem, we deduce that φ = ϕ (1)−1 ϕ ∈ Char (A). But
ker (ϕ) = ker (φ).

Finally, the union over all the characters indicated above belongs to A\R#.
Conversely, take a ∈ A\R#. Then a ∈ ker (ϕ) and R ∩ ker (ϕ) = ∅ for some
functional ϕ ∈ A∗. But ker (ϕ) = ker (φ) for some φ ∈ Char (A). �

Corollary 4.6. If R is a regularity in a Banach algebra A, then so is R#.

Proof. Take a, b ∈ R#. If ab /∈ R#, then ab ∈ ker (ϕ) for some ϕ ∈ Char (A),
R ∩ ker (ϕ) = ∅, by virtue of Theorem 4.5. Then

0 = ϕ (ab) = ϕ (a)ϕ (b) .

Hence a or b belongs to ker (ϕ), that is, a or b does not belong R#, a contradiction.
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Conversely, if a /∈ R# or b /∈ R#, then ϕ (ab) = ϕ (a)ϕ (b) = 0 for some ϕ ∈
Char (A), R ∩ ker (ϕ) = ∅ (Theorem 4.5), that is, ab /∈ R#. Whence R# is a
regularity in A. �

Now let τ be a subspectrum on a unital Banach algebra A and let Kτ ⊆
Char (A) be the set of all τ -singular characters of A. Note that Kτ ⊆ Kτ and
ker (ϕ) ∩Rτ = ∅ for all ϕ ∈ Kτ (see Section 3).

Corollary 4.7. Let τ be a subspectrum on a unital Banach algebra A. If ϕ ∈ Kτ ,
then ker (ϕ) = ker (φ) for some φ ∈ Kτ . In particular,

A\Rτ =
⋃

{ker (ϕ) : ϕ ∈ Kτ} .
Moreover, Rτ is open in A. Thus Rτ has an open proper envelope R#

τ which
coincides with itself.

Proof. Take ϕ ∈ Kτ . Using Proposition 4.4 and Theorem 4.5, we infer that
ker (ϕ) = ker (φ) for some φ ∈ Char (A). But ker (ϕ) is a τ -singular subspace,
therefore φ ∈ Kτ . Thus A\Rτ =

⋃ {ker (ϕ) : ϕ ∈ Kτ}.
Finally, take a ∈ Rτ . Then sa = min {|λ| : λ ∈ τ (a)} > 0 and if ‖b‖ < sa,

then a+ b ∈ Rτ . �
Corollary 4.8. Let τ be a subspectrum on a unital Banach algebra A. Then

τ (a) =
{
ϕ(k) (a) : ϕ ∈ Kτ

}

for all tuples a ∈ Ak, k ∈ N. Moreover, Kτ is a compact subspace in Char (A).

Proof. First note that φ (x) = φ (1)−1
φ (x) = φ (x) for all φ ∈ Char (A) and x ∈ A.

Thus {
ϕ(k) (a) : ϕ ∈ Kτ

}
⊆

{
ϕ(k) (a) : ϕ ∈ Kτ

}
.

On account of Theorem 3.11, it suffices to prove that for any ϕ ∈ Kτ there cor-
responds φ ∈ Kτ such that ϕ = φ. By Corollary 4.7, ker (ϕ) = ker (φ) for some
φ ∈ Kτ . Then φ = αϕ for some α ∈ C. But 1 = φ (1) = αϕ (1), that is, α = ϕ (1)−1

(Lemma 3.6). Thus φ = ϕ.
Now let us prove that Kτ is compact with respect to the topology inherited

from Char (A). It suffices to proveKτ is closed in Char (A). Take ϕ ∈ Char (A) \Kτ .
Then ker (ϕ) is not τ -singular, that is, 0 /∈ τ (b) for some (say k-)tuple b in ker (ϕ).
Let ε > 0 be the distance between the origin and τ (b) in Ck, and let

Ub,η (ϕ) =
{
φ ∈ Char (A) : max

1≤i≤k
|φ (bi) − ϕ (bi)| < η

}

be a neighborhood of ϕ in Char (A), where η = (2k)−1/2
ε. Take φ ∈ Ub,η (ϕ).

Then max |φ (bi)| < (2k)−1/2 ε. Moreover,

(φ (b1) , . . . , φ (bk)) /∈ τ (b) ,

for in the contrary case we would have ε2 ≤ ∑k
i=1 |φ (bi)|2 ≤ kmax |φ (bi)|2 < ε2/2.

It follows that φ /∈ Kτ . Thus Ub,η (ϕ) ∩ Kτ = ∅. �
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Corollary 4.9. Let τ be a subspectrum on a unital Banach algebra A. Then

Radτ (A) =
⋂

{ker (ϕ) : ϕ ∈ Kτ} .

In particular, Radτ (A) is a closed two-sided ideal in A.

Proof. It suffices to apply Corollary 3.9 and Corollary 4.7. �

Corollary 4.10. Let τ be a subspectrum on a unital Banach algebra A. Then τ∼ is a
subspectrum on the commutative Banach algebra A/Radτ (A) and π∗

τ (Kτ∼) = Kτ .

Proof. Using Lemma 3.1 and Corollary 4.9, we infer that A/Radτ (A) is a com-
mutative Banach algebra. Moreover, τ∼ is a subspectrum on A/Radτ (A) as we
have shown in Lemma 3.2.

Now take ψ ∈ Kτ∼ . Then ψ ∈ Char (A/Radτ (A)) such that ψ is τ∼-singular.
Put ϕ = π∗

τ (ψ) = ψ·πτ . Evidently, ϕ ∈ Char (A) and ϕ ∈ Kτ by virtue of Corollary
3.10. So ϕ ∈ Kτ . Conversely, take ϕ ∈ Kτ . By Corollary 4.9,

ϕ = ψ · πτ , ψ ∈ Char (A/Radτ (A)) .

Again by Corollary 3.10, ψ ∈ Kτ∼ . Thus π∗
τ (Kτ∼) = Kτ . �

5. Subspectrum associated to a regularity in a Banach algebra

In this section we construct a subspectrum called Harte type spectrum by means of
a regularity in a Banach algebra. That will reverse (in a certain sense) the process
of creating regularities from subspectra.

Let R be a regularity in a unital Banach algebra A and let

KR = {ϕ ∈ Char (A) : R ∩ ker (ϕ) = ∅} .
According to Theorem 4.5,

A\R# =
⋃

{ker (ϕ) : ϕ ∈ KR} . (5.1)

Let us introduce a closed two-sided ideal

R (A) =
⋂

{ker (ϕ) : ϕ ∈ KR}
in A. Evidently, RadA ⊆ R (A). Moreover, since ϕ ([x, y]) = 0, x, y ∈ A, ϕ ∈
Char (A), it follows that A/R (A) is a semisimple commutative Banach algebra.

Lemma 5.1. If R has an open proper envelope R# in A, then KR is a nonempty
compact space.

Proof. Since R# is proper, it follows that A/R# �= ∅ and therefore KR �= ∅. It
remains to prove that KR is a closed subset in Char (A). Take a net {ϕι} in KR

which tends to ϕ ∈ Char (A). If ϕ /∈ KR, then ϕ (x) = 0 for a certain x ∈ R. Note
that x−ϕι (x) ∈ ker (ϕι) and ker (ϕι)∩R# = ∅ (see Lemma 4.1). Thus {x− ϕι (x)}
is a net in the closed set A\R# and it tends to x. Consequently, x ∈ A\R# and
thereupon x /∈ R, a contradiction. Thus ϕ ∈ KR and KR is closed in Char (A). �
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Now let a = (a1, . . . , ak) ∈ Ak be a k-tuple in A. It determines a continuous
mapping

â = (â1, . . . , âk) : KR → C
k, â (ϕ) = ϕ(k) (a) = (ϕ (a1) , . . . , ϕ (ak)) .

Actually, it is the restriction to KR of the continuous mapping â : Char (A) → Ck,
â (ϕ) = ϕ(k) (a) determined by the Gelfand transform. Put

τR (a) = im (â) ,

which is a nonempty compact subset in Ck thanks to Lemma 5.1.

Lemma 5.2. Let a ∈ Ak and let x ∈ R (A)k. Then τR (a+ x) = τR (a).

Proof. Note that x̂ (ϕ) = 0 for all ϕ ∈ KR. Then τR (a+ x) = im
(
â+ x

)
=

im (â+ x̂) = im (â) = τR (a). �

Proposition 5.3. Let R be a regularity in a Banach algebra A whose envelope is
open and proper. Then the correspondence τR over all tuples in A is a subspectrum
on A. Moreover, RτR = R# and RadτR A = R (A).

Proof. Take a k-tuple a in A, and m-tuple p (e) in Fk (e). Then p (a) is a m-tuple
in A and

p̂ (a) (ϕ) = ϕ(m) (p (a)) = (ϕ (p1 (a)) , . . . , ϕ (pm (a))) = (p1 (â (ϕ)) , . . . , pm (â (ϕ)))

= p (â (ϕ)) .

Therefore
τR (p (a)) = im

(
p̂ (a)

)
= p (im (â)) = p (τR (a)) ,

that is, (3.1) holds. Further,

RτR = {a ∈ A : 0 /∈ τR (a)} = {a ∈ A : â (ϕ) �= 0, ϕ ∈ KR}
= {a ∈ A : ϕ (a) �= 0, ϕ ∈ KR} = {a ∈ A : a /∈ ker (ϕ) , ϕ ∈ KR}
= A\

⋃
{ker (ϕ) : ϕ ∈ KR} = R#,

that is, RτR = R#.
Finally,

RadτR A = {a ∈ A : τR (a) = {0}} = {a ∈ A : ϕ (a) = 0, ϕ ∈ KR}
=

⋂
{ker (ϕ) : ϕ ∈ KR} = R (A) ,

that is, R (A) = RadτR A. �

By Lemma 3.1, Corollary 4.9 and Proposition 5.3, infer that A/R (A) is a
commutative semisimple Banach algebra. The mapping

T : A→ C (KR) , T (a) = â, â (ϕ) = ϕ (a) ,
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is a contractive homomorphism. Evidently, ker (T ) = R (A) and it can be factored
as a composition of the quotient mapping A → A/R (A) and a contractive ho-
momorphism A/R (A) → C (KR) (see Lemma 5.2). Denote the range of T by B,
which is a unital subalgebra in C (KR).

Lemma 5.4. T
(
R#

)
= B ∩G (C (KR)).

Proof. If a ∈ R#, then â (ϕ) = ϕ (a) �= 0 for all ϕ ∈ KR, that is, the function â is
invertible in C (KR). Conversely, if â is invertible in C (KR), then ϕ (a) �= 0 for all
ϕ ∈ KR. It follows that 0 /∈ τR (a), that is, a ∈ RτR . Using Proposition 5.3, infer
that a ∈ R#. Thus T

(
R#

)
= B ∩G (C (KR)). �

For a k-tuple â in B we set

γR (â) =
{
λ ∈ C

k : B (â− λ) ∩G (C (KR)) = ∅} .

Note that γR is a subspectrum on B (see (2.1)).

Lemma 5.5. If R is a regularity in a unital Banach algebra A, then R# = R# +
R (A). In particular, if A (M) (respectively, (M)A) is the left ideal (respectively,
right) in A generated by a subset M ⊆ A, then A (M)∩R# = ∅ iff (M)A∩R# = ∅.
Proof. If a + x /∈ R# for some a ∈ R# and x ∈ R (A), then ϕ (a+ x) = 0
for some ϕ ∈ KR thanks to (5.1). Thereby ϕ (a) = 0, that is, a ∈ A/R#. So,
R# = R# +R (A).

Now let M be a subset in A such that A (M) ∩R# = ∅. Then

(M)A ⊆ A (M) + [A,M ] ⊆ A (M) +R (A)

(see Corollary 4.9). If x ∈ (M)A ∩ R#, then x = y + z for some y ∈ A (M) and
z ∈ R (A). It follows that y = x− z ∈ R# +R (A) = R#, a contradiction. �

Lemma 5.6. If ϕ is a γR-singular functional on B, then A (a) ∩ R# = ∅ for any
tuple a in ker (ϕT ).

Proof. If a is a k-tuple in ker (ϕT ), then so is â in ker (ϕ). Being ϕ a γR-singular,
we obtain that 0 ∈ γR (â), that is, B (â) ∩ G (C (KR)) = ∅. The latter in turn
implies that A (a) ∩ R# = ∅, for T

(
A (a) ∩R#

)
= B (â) ∩ G (C (KR)) thanks to

Lemmas 5.4 and 5.5. �

Now let R be a regularity in a unital Banach algebra A whose envelope R#

is open and proper. By a Harte type spectrum σR associated with R we mean a
set-valued function over all tuples in A determined by the rule

σR (a) =
{
λ ∈ C

k : A (a− λ) ∩R# = ∅}

for a k-tuple a in A. Using Lemma 4.1, we deduce that

σR# (a) =
{
λ ∈ C

k : A (a− λ) ∩R## = ∅}

=
{
λ ∈ C

k : A (a− λ) ∩R# = ∅}

= σR (a) .
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Furthermore, the left ideal A (a− λ) generated by a−λ in the definition of σR (a)
can be replaced with the right one as follows from Lemma 5.5. If R = G (A) the
set σR (a) is the known [13, 1.8.1] Harte spectrum of the tuple a.

Theorem 5.7. Let R be a regularity in a Banach algebra A whose envelope R# is
open and proper. Then

σR (a) = τR (a)

for any k-tuple a in A. In particular, σR is a subspectrum on A. Moreover,

RσR = R# and RadσR A = R (A) .

Proof. Take â (ϕ) ∈ τR (a), where ϕ ∈ KR. Since ϕ is a character of A, it follows
that A (a− â (ϕ)) ⊆ ker (ϕ). Therefore A (a− â (ϕ)) ∩ R# = ∅, that is, â (ϕ) ∈
σR (a). Hence τR (a) ⊆ σR (a). Conversely, assume that 0 ∈ σR (a). Then A (a) ∩
R# = ∅. Using Lemmas 5.4 and 5.5, we infer that B (â)∩G (C (KR)) = ∅. Whence
0 ∈ γR (â). Since γR is a subspectrum on B, we deduce that 0 ∈ γR

(
b̂
)

for any
tuple in the subspace in B generated by â. Thus the subspace generated by â
is γR-singular. Using Proposition 3.7, we obtain that â is a tuple in ker (φ) for
some γR-singular functional φ ∈ B∗. According to Lemma 5.6, A (b) ∩ R# = ∅
for any tuple b in ker (ϕ), where ϕ = φT . In particular, ker (ϕ) ∩ R = ∅. By
Theorem 4.5, one can assume that ϕ ∈ Char (A), that is, ϕ ∈ KR. Moreover, a
is a tuple in ker (ϕ). Therefore 0 = â (ϕ) ∈ τR (a), that is, σR (a) ⊆ τR (a). Thus
σR (a) = τR (a).

It remains to apply Proposition 5.3. �

6. Slodkowski and Harte type spectra

In this section we compare various subspectra and investigate when a subspectrum
on a Banach algebra is reduced to the Harte type spectrum.

Let A be a unital Banach algebra. In Section 4, a correspondence

τ → Rτ

between subspectra on A and regularities in A has been proposed. Further, in
Section 5, we have considered a correspondence

R → σR

between regularities and Harte type spectra, which can regarded as a right inverse
of the first one, since RσR = R# by virtue of Theorem 5.7. Thus RσR = R whenever
R# = R.

Theorem 6.1. Let τ be a subspectrum on a unital Banach algebra A. Then τ ⊆ σRτ .
Moreover, τ = σR for a regularity R that has an open and proper envelope R# iff
each ϕ ∈ Char (A) with ker (ϕ) ∩R = ∅ is a τ-singular functional on A.
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Proof. Put KRτ = {ϕ ∈ Char (A) : ker (ϕ) ∩Rτ = ∅} and let a be a k-tuple in A.
By Theorem 5.7, σRτ (a) = τRτ (a) = â (KRτ ). Moreover,

A/R#
τ =

⋃
{ker (ϕ) : ϕ ∈ KRτ }

thanks to Theorem 4.5. But R#
τ = Rτ due to Proposition 4.4. Furthermore, on

account of Corollary 4.7, A\Rτ =
⋃ {ker (ϕ) : ϕ ∈ Kτ}, where Kτ ⊆ KRτ is the

subset of all τ -singular functionals. Using Corollary 4.8, infer that

τ (a) =
{
ϕ(k) (a) : ϕ ∈ Kτ

}
= â (Kτ ) ⊆ â (KRτ ) = σRτ (a) ,

that is, τ ⊆ σRτ .
Now assume that τ = σR for some regularity R in A that has an open and

proper envelope R#. Take ϕ ∈ KR. We want to prove that ϕ ∈ Kτ . If a is a k-tuple
in ker (ϕ), then

0 = ϕ(k) (a) = â (ϕ) ∈ τR (a) = σR (a) = τ (a)

by virtue of Theorem 5.7. Thus 0 ∈ τ (a) for each tuple a in ker (ϕ), that is, ϕ is
τ -singular. Further, if ϕ ∈ Kτ , then 0 ∈ τ (a) for each a ∈ ker (ϕ). It follows that
0 ∈ σR (a), that is, A (a) ∩ R# = ∅. In particular, a /∈ R. Thus ker (ϕ) ∩ R = ∅,
which means that ϕ ∈ KR. Thus KR = Kτ .

Conversely, assume that Kτ = KR. Then

σR (a) = â (KR) = â (Kτ ) = τ (a)

by virtue of Theorem 5.7 and Corollary 4.8. Thus σR = τ . �

Note that the inclusion τ ⊆ σRτ stated in Theorem 6.1 can be proper, that
is, there are Harte type spectrum σR and subspectrum τ with the same regularity
R (that is, Rτ = R) such that τ �= σR. That can be characterized in terms of
characters. Consider a regularity R in A that has an open and proper envelope
R#. Then we have a nonempty compact subset KR ⊆ Char (A) (see Lemma 5.1)
of all the σR-singular functionals (see Theorem 5.7). For a closed subset K ⊆ KR

we define its A-rationally convex hull in Char (A) as

K̃ =
{
ϕ ∈ Char (A) : ker (ϕ) ⊆

⋃
{ker (φ) : φ ∈ K}

}
.

Note that
⋃ {ker (φ) : φ ∈ K} ⊆ ⋃ {ker (φ) : φ ∈ KR} = A\R#. It follows that

ker (ϕ)∩R = ∅ for all ϕ ∈ K̃, that is, K̃ ⊆ KR. In terms of the Gelfand transform
we have

K̃ =
{
ϕ ∈ Char (A) : ∀x ∈ A, x ∈ ker (ϕ) =⇒ x ∈

⋃
{ker (φ) : φ ∈ K}

}

= {ϕ ∈ Char (A) : ∀x ∈ A, x̂ (ϕ) = 0 =⇒ 0 ∈ x̂ (K)}
(see [15], [23]). Since Rτ = R, it follows that A\R =

⋃ {ker (ϕ) : ϕ ∈ Kτ} (see
Corollary 4.7). But

A\R ⊇ A\R# =
⋃

{ker (ϕ) : ϕ ∈ KR} .



358 Dosiev IEOT

Therefore ker (ϕ) ⊆ ⋃ {ker (φ) : φ ∈ Kτ} for all ϕ ∈ KR. Thus

K̃τ = KR (6.1)

for a subspectrum with the regularity R.

Theorem 6.2. Let R be a regularity in A that has an open and proper envelope
R#. Assume that K is a nonempty closed subset in KR such that K̃ = KR. Then
there is a subspectrum τ on A such that Rτ = R#, Kτ = K and τ ⊆ σR. Namely,
τ (a) = â (K) for a tuple a in A. Moreover, τ �= σR iff K �=KR.

Proof. Evidently, the relation τ (a) = â (K) determines a subspectrum on A (see
the proof of Proposition 5.3). Moreover,

Rτ = {a ∈ A : 0 /∈ τ (a)} = {a ∈ A : 0 /∈ â (K)}
= {a ∈ A : ϕ (a) �= 0, ϕ ∈ K} = A\

⋃
{ker (ϕ) : ϕ ∈ K}

= A\
⋃{

ker (ϕ) : ϕ ∈ K̃
}

= A\
⋃

{ker (ϕ) : ϕ ∈ KR}
= R#.

By Theorem 6.1, τ ⊆ σR# = σR.
Now let us prove that Kτ = K. Clearly K ⊆ Kτ . Take ϕ ∈ Kτ . So, ϕ is a

τ -singular character. We shall show that ϕ belongs to the closure of K. Take a
neighborhood

Ua,ε (ϕ) =
{
φ ∈ Char (A) : max

1≤i≤k
|φ (ai) − ϕ (ai)| < ε

}

of ϕ in Char (A), where a = (a1, . . . , ak) is a k-tuple in A. Obviously, a− ϕ(k) (a)
is a k-tuple in ker (ϕ). Therefore 0 ∈ τ

(
a− ϕ(k) (a)

)
, which in turn implies that

φ(k)
(
a− ϕ(k) (a)

)
= 0

for some φ ∈ K. Thus φ(k) (a) = ϕ(k) (a). It follows that φ ∈ Ua,ε (ϕ) ∩ K for any
ε. Taking into account that K is closed, infer that ϕ ∈ K.

Finally, if K is a proper subset in KR, then Kτ �= KR, for K = Kτ as we have
just proven. By Theorem 6.1, τ �= σR. Conversely, if τ �= σR, then τ (a) �= σR (a)
for a k-tuple a in A. It follows that 0 ∈ σR (b) \τ (b) for a k-tuple b in A. According
to Theorem 5.7, b ∈ ker (ϕ)k for some ϕ ∈ KR. But 0 /∈ τ (b). It follows that ϕ is
not τ -singular, that is, ϕ /∈ Kτ . Thereby ϕ /∈ K. �

Thus each regularity may generate a family of subspectra different from Harte
type spectrum. Let us illustrate this by an example.

Example. Let A be the algebra of all continuous functions on the closed ball

B (0, 1) =
{

(z, w) ∈ C
2 : |z|2 + |w|2 ≤ 1

}
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centered at the origin that are holomorphic on its interior, and let B (0, 1) be the
unit open ball in C2 centered at the origin. The algebra A furnished with the
uniform norm on B (0, 1) is a commutative semisimple Banach algebra. Moreover,

Char (A) = B (0, 1) .

Take a closed subset K ⊆B (0, 1) containing the topological (or Shilov) boundary
of B (0, 1). Then K̃ = B (0, 1). Indeed, first note that

B (0, 1) \K ⊆B (0, 1)

by assumption. Take (z, w) ∈ B (0, 1). Prove that (z, w) ∈ K̃. Assume that (z, w) /∈
K. Then (z, w) ∈ B (0, 1). If f (z, w) = 0 for a function f ∈ A, then f (z0, w0) =
0 for some (z0, w0), |z0|2 + |w0|2 = 1, by the known property of holomorphic
functions. But (z0, w0) ∈ K, therefore 0 ∈ f (K). It follows that (z, w) ∈ K̃. Thus
K̃ = B (0, 1). Further, demonstrate that if τ is a subspectrum on A associated
with K (see Theorem 6.2), then K is exactly the set of all τ -singular characters.
Indeed, take (a, b) ∈ B (0, 1) which is a τ -singular character. We have to prove that
(a, b) ∈ K. It suffices to assume that (a, b) ∈ B (0, 1). Consider the polynomials

p (z, w) = z − a and q (z, w) = w − b.

Obviously, p (a, b) = q (a, b) = 0. Since (a, b) is a τ -singular character, it follows
that

0 ∈ τ (p, q) = {(p (z, w) , q (z, w)) : (z, w) ∈ K} .
Then p (z0, w0) = q (z0, w0) = 0 for some (z0, w0) ∈ K. Whence z0 = a and w0 = b,
or (a, b) = (z0, w0) ∈ K.

The example can be modified by extending the boundary as in [18].

Now we apply Theorem 6.2 to demonstrate a difference between Slodkowski
and Harte type spectra. Let us start with simple assertions.

Lemma 6.3. Let α : A → B be a unital algebra homomorphism between unital
Banach algebras A and B, and let R be a regularity in B. Then so is α−1 (R) and

α−1 (R)# ⊆ α−1
(
R#

)
.

In particular, α−1
(
R#

)
is a regularity in A such that α−1

(
R#

)# = α−1
(
R#

)
.

Moreover, if R has a proper envelope R# in B, then α−1 (R) has a proper envelope
too.

Proof. Take a, b ∈ A. Then ab ∈ α−1 (R) iff α (ab) = α (a)α (b) ∈ R which in turn
is possible (see Definition 4.2) iff both α (a) , α (b) ∈ R, that is, a, b ∈ α−1 (R).
Further, take a ∈ A\α−1

(
R#

)
. Then α (a) /∈ R#. So, ψ (α (a)) = 0 for some

ψ ∈ B∗, ker (ψ) ∩ R = ∅. It follows that a ∈ ker (ϕ) and ker (ϕ) ∩ α−1 (R) = ∅,
where ϕ = ψα. Thus a /∈ α−1 (R)# and therefore α−1 (R)# ⊆ α−1

(
R#

)
.
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Using Corollary 4.6, infer that R# is a regularity in B. Therefore α−1
(
R#

)

is a regularity in A. Moreover, on account of the inclusion that we have just proven
and Lemma 4.1, we deduce that

α−1
(
R#

) ⊆ α−1
(
R#

)# ⊆ α−1
(
R##

)
= α−1

(
R#

)
,

that is, α−1
(
R#

)# = α−1
(
R#

)
.

Finally, if R# �= B, then 0 /∈ R# and therefore 0 /∈ α−1
(
R#

)
. Since

α−1 (R)# ⊆ α−1
(
R#

)
, it follows that α−1 (R)# is proper. �

Corollary 6.4. (see [15, Proposition 3.3 ]) If α : A → B is a bounded algebra
homomorphism and R is a regularity in B such that R = R# is open, then
α−1 (R) = α−1 (R)# is an open regularity too.

Now assume that A is a unital Banach algebra such that its attendant Lie
algebra Alie is nilpotent, and let α : A → B (X) be a unital bounded algebra
homomorphism, that is, a bounded representation of A on the Banach space X .
Put

Rα = α−1 (G (B (X))) . (6.2)
If B is the closure of the inverse closed envelope of the nilpotent Lie algebra α(A)
in B(X), then B is an inverse closed Banach algebra, which is commutative modulo
its Jacobson radical thanks to Turovskii’s lemma. By Lemma 4.3, the set G (B) is
a regularity in B and G (B) = G (B)#. Furthermore, Rα = α−1(B ∩ G(B(X)) =
α−1(G(B)). Using Lemma 6.3 and Corollary 6.4, infer that Rα is a regularity in
A such that Rα = R#

α is an open proper subset in A.
If a is a s-tuple in A, then the Lie subalgebra L (a) in Alie generated by a

is nilpotent. Being a finitely generated nilpotent Lie algebra, L (a) has a finite
dimension. In particular, if p (e) ∈ Fk (e)m is a m-tuple of polynomials, then
L (p (a)) is a finite dimensional nilpotent Lie subalgebra in Alie. Consider a unital
bounded representation α : A→ B (X) and a s-tuple a in A. Then π|L(a) : L (a) →
B (X) is a Lie representation. Using the Koszul complex generated by the L (a)-
module

(
X,π|L(a)

)
, it is defined a family of Slodkowski spectra

{σπ,k (a) , σδ,k (a) : k ≥ 0}
(see [8]), which are compact subsets in C

k (see [3]). So, we have a family

S = {σπ,k, σδ,k : k ≥ 0}
of set-valued functions over all tuples in A.

Proposition 6.5. Each τ ∈ S is a subspectrum on A.

Proof. Fix a s-tuple a in A and let A (L (a)) be the associative subalgebra in A
generated by the nilpotent Lie algebra L (a). The algebra A (L (a)) furnished with
the finest locally convex topology is dominating over the module

(
X,π|L(a)

)
in the

sense of [8, Definition 4], we write

A (L (a)) � (
X,π|L(a)

)
.
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Taking into account that A (L (a)) is comprising polynomials in elements of L (a),
we may apply the noncommutative spectral mapping theorems from [8]. As we
have confirmed above each tuple p (a) in A (L (a)) generates a finite-dimensional
nilpotent Lie subalgebra L (p (a)), therefore

τ (p (a)) = p (τ (a))

for all τ ∈ S, due to [8, Propostion 6 and Corollary 8]. Thus τ is a subspectrum
on A. �

Take τ ∈ S and x ∈ A. Then τ (x) = σ (α (x)) for all k > 1. Therefore

Rτ = {x ∈ A : 0 /∈ τ (x)} = {x ∈ A : 0 /∈ σ (α (x))}
= {x ∈ A : α (x) ∈ G (B (X))} = α−1 (G (B (X)))
= Rα

(see (6.2)). Thus Rα = Rτ for all τ ∈ S. By Theorem 6.1, τ ⊆ σRα . Moreover,
using Corollary 4.8, infer that τ (a) =

{
ϕ(s) (a) : ϕ ∈ Kτ

}
. Therefore K̃τ = KRα

by (6.1). In particular, we have a chain

K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ Kn+1 ⊆ · · ·
of increasing compact subsets in KRα such that K̃n = KRα for all n ≥ 0, where
Kn = Kσπ,n . The known [16] example by Z. Slodkowski shows that spectra σπ,n are
different for a Hilbert space representation α of a commutative Banach algebra.
So, if σπ,n �= σπ,n+1, then Kn �= Kn+1 and Kn turns out to be a nonempty proper
closed subset in KRα such that K̃n = KRα by virtue of Theorem 6.2.

Finally, let us consider the Taylor spectrum σT which is defined as

σT (a) = σπ,n (a)

if a is a n-tuple in A. By Proposition 6.5, σT is a subspectrum on A, therefore

σT (a) =
{
ϕ(n) (a) : ϕ ∈ KσT

}
,

where KσT is a closed subset in KRα such that K̃σT = KRα . Moreover, Kn ⊆ KσT

for all n. But again KσT may be a proper subset of KRα as shows the example in
[2] by R. Berntzen and A. Soltysiak. Namely, there are commuting Banach space
operators a, b ∈ B (X) such that σG(B(X)) (a, b) is not contained in σT (a, b). If A
is the closed unital associative subalgebra in B (X) generated by a and b, and α is
the identical representation A→ B (X), then

σG(B(X)) (a, b) ⊆ σA∩G(B(X)) (a, b) .

Therefore σA∩G(B(X)) (a, b) is not contained in σT (a, b). Thus KσT is a proper
closed subset in KRα such that K̃σT = KRα .

We end the paper by proposing an example of a noncommutative Banach al-
gebra A with its nilpotent attendant Lie algebra Alie. That will demonstrate a gap
between commutative and noncommutative cases. For the sake of generality, we
consider the case of an Arens-Michael (locally multiplicatively associative) algebra
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reducing it to a Banach algebra. Fix a Heisenberg algebra g with its generators
e1, e2, e3 (see Section 2). Thus [e1, e2] = e3 and [ei, e3] = 0 for all i. Let A be an
Arens-Michael algebra contained the Heisenberg algebra g as a Lie subalgebra (in
Alie) and the associative subalgebra in A generated by g is dense in it. If U (g) is
the universal enveloping algebra of g, then the canonical embedding ι : g → A is
extended up to a canonical algebra homomorphism ι̃ : U (g) → A with the dense
range.

Proposition 6.6. If ker (ι̃) �= {0}, then e3 is a nilpotent element in A. In particular,
Alie is a nilpotent Lie algebra.

Proof. Let C = im (ι̃). By assumption, C is a dense subalgebra in A. One can easily
verify that the k-th term C(k)

lie of the lower central series of the Lie subalgebra Clie

is contained in Cek
3 , k ∈ N. Moreover, A(k)

lie is included into the closure C(k)
lie . To

establish that Alie is nilpotent, it suffices to prove that e3 is nilpotent in A.
Let {‖·‖ν : ν ∈ Λ} be a family of multiplicative seminorms on A defining

its locally convex topology and let Iν = {a ∈ A : ‖a‖ν = 0}. Then Iν is a two-
sided ideal in A and A/Iν is a normed algebra with respect to the quotient norm
induced by ‖·‖ν . Let Aν be its norm-completion. The family of Banach algebras
{Aν} generates an inverse system and its inverse limit is topologically isomorphic
to A [12, 5.2.17]. It is obvious that the associative subalgebra in Aν generated
by the nilpotent Lie subalgebra πν (g) is dense in Aν , where πν : A → Aν is
the canonical map, ν ∈ Λ. By Turovskii’s lemma, Aν is commutative modulo its
Jacobson radical, thereupon πν (e3) is a quasinilpotent element in Aν . On that
account we conclude that σ (e3) = {0}, for

σ (e3) =
⋃

ν∈Λ

σ (πν (e3))

(see [12, 5.2.12]). To prove that e3 is nilpotent, one suffices to demonstrate that
q (e3) = 0 for a certain nonzero polynomial q (z) of one complex variable z [11,
Problem 97].

By assumption ι̃ (p) = 0 for some nonzero p ∈ U (g). By Poincare-Birkhoff-
Witt theorem,

p =
n∑

m=0

pm (e1, e2) em
3

for some polynomials pm = pm (z, w) in two complex variables. Assume that
i = max {deg (pm)}, where deg (pm) is the degree (maximum of the homogeneous
degrees) of pm. Put i = deg (pm1) = · · · = deg (pms) for some mj , 0 ≤ m1 < · · · <
ms ≤ n. Consider the polynomial pm1 . Then

pm1 (e1, e2) = λkm1e
k
1e

i−k
2 + qm1 (e1, e2)

such that λkm1 �= 0 and qm1 (z, w) is a polynomial without the monomial zkwi−k,
for some k. Let λkmj be the coefficient of zkwi−k in pmj (z, w), 2 ≤ j ≤ s. So
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pm1 (e1, e2) = λkmje
k
1e

i−k
2 + qmj (e1, e2), where qmj (z, w) is a polynomial without

zkwi−k. Consider a linear operator

Ti,k = (−1)k (ad e2)
k (ad e1)

i−k : U (g) → U (g) .

Note that

Ti,k

(
es
1e

t
2e

r
3

)
= Ti,k

(
es
1e

t
2

)
er
3 =

s!t!
(s− k)! (t− i+ k)!

es−k
1 et−i+k

2 ei+r
3

(here we have assumed that e−q
p = 0, p = 1, 2, q ∈ N), thereby Ti,k (es

1e
t
2e

r
3) �= 0

only when s ≥ k and t ≥ i− k. It follows that

Ti,k

(
pmj (e1, e2)

)
= Ti,k

(
λkmje

k
1e

i−k
2

)
+ Ti,k

(
qmj (e1, e2)

)
= λkmjTi,k

(
ek
1e

i−k
2

)

= k! (i− k)!λkmje
i
3,

for all j, 1 ≤ j ≤ s. Thus

Ti,k (p) =
s∑

j=1

Ti,k

(
pmj (e1, e2)

)
e

mj

3 = k! (i− k)!
s∑

j=1

λkmj e
i+mj

3 .

We set q = k! (i− k)!
∑s

j=1 λkmje
i+mj

3 , which is a nonzero polynomial in U (g).
Prove that q (e3) = 0 in A. Being a two-sided ideal in U (g), the subspace ker (ι̃) ⊆
U (g) is invariant with respect to the operator Ti,k. With p ∈ ker (ι̃) in mind, infer
that q = Ti,k (p) ∈ ker (ι̃). Therefore q (e3) = ι̃ (q) = 0. Thus e3 is a nilpotent
element in A. It follows that Alie is a nilpotent Lie algebra. �

The assertion stated in Proposition 6.6 can be proved for arbitrary nilpotent
Lie algebra. If A is a closed associative envelope of a finite-dimensional nilpotent
Lie algebra g and all elements from [g, g] are nilpotent in A, then Alie is nilpotent.
We omit the details.
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