Integr. equ. oper. theory 61 (2008), 341–364 0378-620X/030341-24, DOI 10.1007/s00020-008-1593-6 \odot 2008 Birkhäuser Verlag Basel/Switzerland

Integral Equations and Operator Theory

Regularities in Noncommutative Banach Algebras

Anar Dosiev

Abstract. In this paper we introduce regularities and subspectra in a unital noncommutative Banach algebra and prove that there is a correspondence between them similar to the commutative case. This correspondence involves a radical on a class of Banach algebras equipped with a subspectrum. Taylor and Slodkowski spectra for noncommutative tuples of bounded linear operators are the main examples of subspectra in the noncommutative case.

Mathematics Subject Classification (2000). Primary 47A13; Secondary 46H30, 17B30.

Keywords. Regularities, subspectrum, characters.

1. Introduction

The regularities play an important role in the (joint) spectral theory of the Banach algebra framework. They generalize the (joint) invertibility in a Banach algebra. It is well known [13] that there is a close relationship between the spectral systems and regularities. In [15] the characterization of those regularities in a commutative Banach algebra related to subspectra has been proposed. A subspectrum in the sense of Zelazko [22] on a commutative Banach algebra A is a set-valued mapping over all tuples in A with the properties to be compact and polynomial spectral mapping. In this paper we introduce a subspectrum on a unital (noncommutative) Banach algebra based upon the properties to be compact and spectral mapping with respect to the noncommutative polynomials (see below Section 3), and establish a correspondence between them and regularities. In the noncommutative case, a subspectrum on A can be determined in terms of Lie algebras generated by the tuples $a = (a_1, \ldots, a_k) \in A^k$ in A using a fixed Banach space representation $\alpha: A \to \mathcal{B}(X)$ [8]. To conduct that approach, one might demand a restrictive condition concerning the Banach algebra A. We meet with the known phenomena [8] when a tuple of noncommutative polynomials $p(a) = (p_1(a), \ldots, p_m(a)) \in A^m$ in

elements of a k-tuple $a \in A^k$ generating a finite dimensional nilpotent Lie subalgebra $\mathfrak{L}(a) \subseteq A$, may generate an infinite dimensional Lie subalgebra $\mathfrak{L}(p(a)) \subseteq A$. To avoid these type of problems, we shall assume that A is a nilpotent Lie algebra, that is, its Lie algebra structure determined by the Lie multiplication $[a,b] = ab - ba, a, b \in A$, is nilpotent (see Section 6). Such algebra A admits sufficiently many subspectra. So are Slodkowski, Taylor spectra

$$\sigma_{\pi,n}(a) = \sigma_{\pi,n}(\pi(a_1), \dots, \pi(a_k)), \quad \sigma_{\delta,n}(a) = \sigma_{\delta,n}(\pi(a_1), \dots, \pi(a_k)), \quad n \ge 0,$$

and Harte type spectrum $\sigma_R(a)$ for tuples a in A. Thus if τ is one of these spectra, then $\tau(a)$ is a nonempty compact subset in \mathbb{C}^k for a k-tuple a in A, $\tau(x)$ is a subset of the usual spectrum $\sigma(x)$ for a singleton $x \in A$, and if p(a) is a m-tuple of noncommutative polynomials in elements of a k-tuple a, then

$$\tau\left(p\left(a\right)\right) = p\left(\tau\left(a\right)\right)$$

(see [8] and Proposition 6.5). The assumption on A to be a nilpotent Lie algebra is also sustained by the noncommutative functional calculus problem [9]. In Proposition 6.6 we show that the closed associative envelopes of a supernilpotent Lie subalgebra \mathfrak{g} (that is, its commutator $[\mathfrak{g},\mathfrak{g}]$ consists of nilpotent elements) possess that property. But an operator tuple a in $\mathcal{B}(X)$ generating a supernilpotent Lie subalgebra $\mathfrak{g} \subseteq \mathcal{B}(X)$ admits [9], [6], [7] a noncommutative holomorphic functional calculus in a neighborhood of the Taylor spectrum $\sigma_T(a)$, which extends Taylor functional calculus [19]. Thus a noncommutative Banach algebra A which is nilpotent as a Lie algebra has all the favorable spectral properties just as commutative Banach algebras.

A regularity R in a unital Banach algebra A is defined as a nonempty subset $R \subseteq A$ such that $ab \in R$ iff $a, b \in R$ (see Section 4). Each regularity automatically involves a set K_R of characters φ of A such that $R \cap \ker(\varphi) = \emptyset$, and the closed two-sided ideal

$$R(A) = \bigcap \left\{ \ker(\varphi) : \varphi \in K_R \right\}$$

called the R-radical of A. The set

$$R^{\#} = A \setminus \bigcup \left\{ \ker \left(\varphi \right) : \varphi \in K_R \right\}$$

is called an envelope of R. A regularity R having an open proper envelope $R^{\#}$ is of importance in our consideration. Such regularities appear when we deal with subspectra. Namely, a subspectrum τ on A associates a regularity R_{τ} in A given by the rule

$$R_{\tau} = \left\{ a \in A : 0 \notin \tau \left(a \right) \right\}.$$

In this case, R_{τ} is a nonempty open proper subset in A and $R_{\tau}^{\#} = R_{\tau}$ (see [15] for the commutative case). A key role in the noncommutative case plays the τ -radical Rad_{τ} A of A associated to a subspectrum τ on a Banach algebra A. According to the definition

$$\operatorname{Rad}_{\tau} A = \{a \in A : \tau (a) = \{0\}\}.$$

Regularities

It is proved (see Corollary 4.9) that $\operatorname{Rad}_{\tau} A$ is a closed two-sided ideal in A which contains the Jacobson radical Rad A, and A is commutative modulo $\operatorname{Rad}_{\tau} A$. Moreover, τ determines a subspectrum τ^{\sim} on the quotient algebra $A/\operatorname{Rad}_{\tau} A$. Thus τ^{\sim} is a subspectrum in the sense of Zelazko on the commutative (semisimple) Banach algebra $A/\operatorname{Rad}_{\tau} A$. Furthermore, τ generates a compact subset \mathcal{K}_{τ} of the character space $\operatorname{Char}(A)$ of A such that

$$\tau(a_1,\ldots,a_k) = \{(\varphi(a_1),\ldots,\varphi(a_k)) : \varphi \in \mathcal{K}_{\tau}\}\$$

for a k-tuple (a_1, \ldots, a_k) in A.

The process of generating regularities from subspectra can be reversed (see Section 5). Namely, fix a regularity R in A with its open proper envelope $R^{\#}$; one may define a Harte type spectrum σ_R on A by the rule

$$\sigma_R(a) = \left\{ \lambda \in \mathbb{C}^k : A(a - \lambda) \cap R^{\#} = \emptyset \right\},\$$

where a is a k-tuple in A and A $(a - \lambda)$ is the left ideal in A generated by the tuple $a - \lambda$. One can prove that the left ideal in the definition of $\sigma_R(a)$ can be replaced with the right ideal $(a - \lambda) A$ generated by $a - \lambda$, and σ_R is a subspectrum on A. Moreover,

 $R_{\sigma_R} = R^{\#}$

and the σ_R -radical is reduced to the *R*-radical, that is,

$$\operatorname{Rad}_{\sigma_R} A = R\left(A\right).$$

Thus the correspondence $\tau \to R_{\tau}$ between subspectra on A and regularities in A has a right inverse $R \to \sigma_R$. Furthermore $\tau \subseteq \sigma_{R_{\tau}}$. In the commutative case that relation has been observed in [15]. Note that, in general $\tau \neq \sigma_{R_{\tau}}$. We investigate that difference in Section 6 by proposing necessary and sufficient condition when the latter inclusion turns out to be an equality.

2. Preliminaries

All considered linear spaces are assumed to be complex and \mathbb{C} denotes the field of all complex numbers. For a unital associative algebra A, Rad (A) denotes its Jacobson radical and A^* the space of all linear functionals. A unital algebra homomorphism $\lambda : A \to \mathbb{C}$ is said to be a character of A, and the set of all characters of A is denoted by Char (A). If S is a subset of an associative algebra A, then A(S)(respectively, (S) A) denotes the left (respectively, right) ideal in A generated by S. The group of all invertible elements in A is denoted by G(A). If A is a Banach algebra, then as it is well known [4, 1.2], G(A) is an open subset in A and Char (A) is a compact space with respect to the weak*-topology in the space of all bounded linear functionals on A. We use the denotation $\sigma(a)$ for the spectrum of an element $a \in A$. The Banach algebra of all bounded linear operators on a Banach space X is denoted by $\mathcal{B}(X)$. If $\pi : A \to B$ is an algebra homomorphism, then $\pi^{(n)} : A^n \to B^n$ denotes the mapping $\pi^{(n)}(a_1, \ldots, a_n) = (\pi(a_1), \ldots, \pi(a_n))$ between the n-tuples in A and B.

The following assertion is a well known [14] fact.

Theorem (Gleason, Kahane, Zelazko). Let A be a unital Banach algebra and let $\varphi : A \to \mathbb{C}$ be a linear functional such that $\varphi(1) = 1$ and $\varphi(a) \neq 0$ for all $a \in G(A)$. Then $\varphi \in \text{Char}(A)$.

Now let $\mathfrak{F}_n(e)$ be the free associative algebra generated by n elements

$$e = (e_1, \ldots, e_n).$$

Each its element p(e) is a noncommutative polynomial $p(e) = \sum_{\nu} \alpha_{\nu} e^{\nu}$, where $\alpha_{\nu} \in \mathbb{C}$ and $e^{\nu} = e_{j_1} \cdots e_{j_k}$ for a finite sequence $\nu = (j_1, \ldots, j_k)$ of elements from the set $\{1, \ldots, n\}$. For a *n*-tuple $a = (a_1, \ldots, a_n) \in A^n$ in a unital associative algebra A, we have a well defined algebra homomorphism

$$\Gamma_a:\mathfrak{F}_n(e)\to A$$

such that $\Gamma_a(e_i) = a_i$ for all *i*. If $p(e) \in \mathfrak{F}_n(e)$ is a free polynomial, then $\Gamma_a(p(e)) = p(a)$ is the same polynomial in A taken by a. Indeed,

$$\Gamma_{a}(p(e)) = \Gamma_{a}\left(\sum_{\nu} \alpha_{\nu} e^{\nu}\right) = \sum_{\nu} \alpha_{\nu} a^{\nu} = p(a).$$

We say that Γ_a is a polynomial calculus for the tuple *a*. Similarly, each element $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ determines a character $\Gamma_\lambda : \mathfrak{F}_n(e) \to \mathbb{C}$ such that $\Gamma_\lambda(e_i) = \lambda_i$ for all *i*. We say that Γ_λ is a point calculus. Actually, each character of $\mathfrak{F}_n(e)$ is a point calculus. We put

$$p(\lambda) = \Gamma_{\lambda} \left(p(e) \right).$$

If $p(e) = (p_1(e), \ldots, p_m(e))$ is a *m*-tuple in $\mathfrak{F}_n(e)$ and $\lambda \in \mathbb{C}^n$, then we write $p(\lambda)$ to indicate the *m*-tuple $(p_1(\lambda), \ldots, p_m(\lambda)) \in \mathbb{C}^m$ in \mathbb{C} .

Now let A be a unital Banach algebra and let B be a unital subalgebra of A. Consider the family $\mathcal{I}_A(B)$ of all left ideals I in B such that $I \cap G(A) = \emptyset$. The following assertion was proved in [10] (see also [23]).

Theorem 2.1. If $aBa^{-1} \subseteq B$ for all $a \in B \cap G(A)$, then $\mathcal{I}_A(B)$ possesses the projection property, that is, for each mutually commuting k-tuple $b = (b_1, \ldots, b_k)$ in $I \in \mathcal{I}_A(B)$ and $c \in B$ commuting with b there correspond $\lambda \in \mathbb{C}$ and $J \in \mathcal{I}_A(B)$ such that $(b_1, \ldots, b_k, c - \lambda) \in J^{k+1}$.

We shall apply (as in [15]) Theorem 2.1 to the following particular case. Let $A = \mathcal{C}(K)$ be the Banach algebra of all complex continuous functions on a compact topological space K furnished with the uniform norm $||f||_{\infty} = \sup \{|f(x)| : x \in K\}$, and let B be a unital subalgebra of A. For a commutative tuple $a \in B^k$ we put

$$\tau(a) = \left\{ \lambda \in \mathbb{C}^k : B(a - \lambda) \cap G(\mathcal{C}(K)) = \emptyset \right\},\tag{2.1}$$

which is a compact subset in \mathbb{C}^k . On account of Theorem 2.1, we infer that τ possesses the projection property, that is, if $a = (a_1, \ldots, a_{k+1}) \in B^{k+1}$ is a k + 1-tuple and $a' = (a_1, \ldots, a_k)$, then $\tau(a') = \pi(\tau(a))$, where $\pi : \mathbb{C}^{k+1} \to \mathbb{C}^k$ is the

canonical projection onto the first k coordinates. Actually, the projection property involves (see [10]) the polynomial spectral mapping property

$$\tau\left(p\left(a\right)\right) = p\left(\tau\left(a\right)\right),$$

where p is a family of polynomials in several complex variables. In this case it is said that τ is a subspectrum on B (see below Section 3). Thus (2.1) determines a subspectrum on B. This type of subspectra were characterized by A. Wawrzynczyk in [23].

Finally, if A is an associative algebra, then it is also a Lie algebra with respect to the canonical Lie multiplication [a, b] = ab - ba, $a, b \in A$. To indicate this Lie algebra structure we use the denotation A_{lie} , thus A_{lie} is the same algebra A considered with respect to the Lie multiplication called the attendant Lie algebra. Let us recall that a Lie algebra L is said to be nilpotent if its lower central series $\{L^{(n)}\}_{n\in\mathbb{N}}$ (where $L^{(n)} = [L, L^{(n-1)}]$) is vanishing, that is, $L^{(k)} = \{0\}$ for a certain k. Thus each operator ad $x : L \to L$, $(ad x)(y) = [x, y] (x \in L)$ of the adjoint representation is nilpotent. If k = 1, the Lie algebra L is commutative. A finite-dimensional nilpotent Lie algebra L with $L^{(2)} = \{0\}$ is called a Heisenberg algebra. A typical example is a Lie algebra \mathfrak{g} with a basis e_1, e_2, e_3 such that $[e_1, e_2] = e_3$ and $[e_i, e_3] = 0$ for all *i*. Further, note that $A_{\text{lie}}^{(1)} = [A, A] = A^{(1)}$ and $A_{\text{lie}}^{(n)} = [A, A_{\text{lie}}^{(n-1)}] = [A, A^{(n-1)}] = A^{(n)}$, n > 1.

Let A be a unital associative algebra. A subalgebra $B \subseteq A$ is said to be an *inverse closed subalgebra* if any invertible in A element of B is invertible in B. Since the inverse closed subalgebras are stable with respect to arbitrary intersections, it can be defined an *inverse closed envelope of a subset in A*.

The following assertion is well known [20], [1].

Lemma (Turovskii). Let A be a unital Banach algebra which is the closure of the inverse closed envelope of a (not necessarily finite-dimensional) nilpotent Lie algebra. Then A is commutative modulo its Jacobson radical Rad A. In particular, so is a Banach algebra A with its nilpotent attendant Lie algebra A_{lie} .

Note that the closed associative envelope in A generated by A_{lie} is obviously reduced to the whole algebra A. Therefore if A_{lie} is a nilpotent Lie algebra, then A as a closed associative envelope of A_{lie} is commutative modulo the Jacobson radical thanks to Turovskii's lemma.

3. Subspectra

In this section we consider purely algebraic case. We introduce a subspectrum in a noncommutative algebra and show that it generates a subspectrum on the quotient algebra modulo suitable radical.

Let A be a unital associative algebra. As in the commutative case [21], a subspectrum τ on A is a mapping which associates to every k-tuple $a = (a_1, \ldots, a_k) \in$ A^k a nonempty compact set $\tau(a) \subseteq \mathbb{C}^k$ such that $\tau(a) \subseteq \prod_{i=1}^k \sigma(a_i)$ and it possesses the spectral mapping property

$$\tau\left(p\left(a\right)\right) = p\left(\tau\left(a\right)\right) \tag{3.1}$$

for an *m*-tuple $p(e) = (p_1(e), \ldots, p_m(e)) \in \mathfrak{F}_k(e)^m$. Of course, we have assumed that the usual spectrum $\sigma(a)$ of each element $a \in A$ is nonvoid. That is true whenever A is a Banach algebra. Note that the equality (3.1) establishes a relation between the polynomial calculus Γ_a and point calculi Γ_λ , $\lambda \in \tau(a)$. Namely,

$$p(\tau(a)) = \{p(\lambda) : \lambda \in \tau(a)\} = \left\{\Gamma_{\lambda}^{(m)}(p(e)) : \lambda \in \tau(a)\right\} = \tau\left(\Gamma_{a}^{(m)}(p(e))\right).$$

For subspectra τ and σ on A we put $\tau \subseteq \sigma$ if $\tau(a) \subseteq \sigma(a)$ for all tuples a in A.

Now let τ be a subspectrum on A. We put

$$\operatorname{Rad}_{\tau}(A) = \{a \in A : \tau(a) = \{0\}\}.$$

We say that $\operatorname{Rad}_{\tau}(A)$ is the τ -radical in A.

Lemma 3.1. Let τ be a subspectrum on A. Then $\operatorname{Rad}_{\tau}(A)$ is a two-sided ideal in A and the quotient algebra $A/\operatorname{Rad}_{\tau}(A)$ is commutative. Moreover,

$$\operatorname{Rad}(A) \subseteq \operatorname{Rad}_{\tau}(A)$$
,

and the inclusion turns out to be an equality whenever $\tau(a) = \sigma(a)$ for all $a \in A$.

Proof. By assumption, $\tau(a) \subseteq \sigma(a)$ is a nonempty subset for each $a \in A$. Therefore $\tau(a) = \{0\}$ if $\sigma(a) = \{0\}$. Take $a \in \text{Rad}(A)$. Then $\lambda - a$ is invertible in Afor all $\lambda, \lambda \neq 0$ (see [5, 8.6.3]). It follows that $\sigma(a) = \{0\}$, that is, $a \in \text{Rad}_{\tau}(A)$. Thus Rad $(A) \subseteq \text{Rad}_{\tau}(A)$.

Take $a, b \in \operatorname{Rad}_{\tau}(A)$. Then

$$\tau (a+b) = \{\lambda + \mu : (\lambda, \mu) \in \tau (a, b)\}$$

and $\tau(a,b) \subseteq \tau(a) \times \tau(b) = \{0\}$. Whence $\tau(a+b) = \{0\}$ and $a+b \in \operatorname{Rad}_{\tau}(A)$. Using a similar argument, we conclude that $ca, ac \in \operatorname{Rad}_{\tau}(A)$ for any $c \in A$. Thus $\operatorname{Rad}_{\tau}(A)$ is a two-sided ideal in A. Now take $a, b \in A$ and let $p(e_1, e_2) = e_1e_2 - e_2e_1 \in \mathfrak{F}_2(e)$. Then $p(a, b) = [a, b] \in A$ and

$$\tau\left(p\left(a,b\right)\right) = p\left(\tau\left(a,b\right)\right) = \left\{\lambda\mu - \mu\lambda : (\lambda,\mu) \in \tau\left(a,b\right)\right\} = \left\{0\right\}.$$

Hence $[a, b] \in \operatorname{Rad}_{\tau}(A)$ and therefore A is commutative modulo $\operatorname{Rad}_{\tau}(A)$.

Consider the quotient linear mapping

 $\pi_{\tau}: A \to A/\operatorname{Rad}_{\tau}(A) \ \pi_{\tau}(a) = a^{\sim}.$

If $a = (a_1, \ldots, a_k)$ is a k-tuple in A, then $a^{\sim} = (a_1^{\sim}, \ldots, a_k^{\sim}) = \pi_{\tau}^{(k)}(a)$ is a k-tuple in $A / \operatorname{Rad}_{\tau}(A)$.

Regularities

Lemma 3.2. Let τ be a subspectrum on A. Then to each k-tuple $a^{\sim} = (a_1^{\sim}, \ldots, a_k^{\sim})$ in $A / \operatorname{Rad}_{\tau}(A)$ there corresponds a subset $\tau^{\sim}(a^{\sim}) \subseteq \mathbb{C}^k$ such that

$$\tau^{\sim}\left(a^{\sim}\right) = \tau\left(b\right)$$

for a k-tuple $b = (b_1, \ldots, b_k) \in A^k$ with $a_i^{\sim} = b_i^{\sim}$ for all i.

Proof. One has to prove that $\tau (a + x) = \tau (a)$ for any k-tuple $x = (x_1, \ldots, x_k)$ in Rad_{τ} (A). Take $\lambda \in \tau (a)$. Then $(\lambda, \mu) \in \tau (a, x)$ for some $\mu \in \mathbb{C}^k$. But $\mu \in \tau (x) \subseteq \prod_{i=1}^k \tau (x_i) = \{0\}$ and $\lambda + \mu \in \tau (a + x)$, that is, $\lambda \in \tau (a + x)$. Thus $\tau (a) \subseteq \tau (a + x)$. Since $-x \in \operatorname{Rad}_{\tau} (A)^k$, it follows that $\tau (a + x) \subseteq \tau (a + x - x) = \tau (a)$. It remains to put $\tau^{\sim} (a^{\sim}) = \tau (a)$.

Lemma 3.3. Let τ be a subspectrum on A. Then $\tau^{\sim}(a^{\sim}) \subseteq \sigma(a^{\sim})$ for a singleton $a \in A$, where $\sigma(a^{\sim})$ is the usual spectrum of a^{\sim} in the algebra $A/\operatorname{Rad}_{\tau}(A)$.

Proof. If $\lambda \notin \sigma(a^{\sim})$, then $(a - \lambda) b = 1 + x$ for some $x \in \text{Rad}_{\tau}(A)$ and $b \in A$. But $\tau((a - \lambda) b) = \tau(1 + x) = \{1\}$ and

$$\tau\left(\left(a-\lambda\right)b\right) = \left\{zw: (z,w) \in \tau\left(a-\lambda,b\right)
ight\}.$$

Then $0 \notin \tau (a - \lambda)$, for in the contrary case $(0, w) \in \tau (a - \lambda, b)$ for some $w \in \mathbb{C}$, which in turn implies that $0 = 0w \in \tau ((a - \lambda)b)$. So, $\lambda \notin \tau (a)$. On account of Lemma 3.2, $\tau^{\sim} (a^{\sim}) = \tau (a) \subseteq \sigma (a^{\sim})$. Whence $\lambda \notin \tau^{\sim} (a^{\sim})$.

Using Lemmas 3.2 and 3.3, we obtain that

$$\tau^{\sim}\left(a_{1}^{\sim},\ldots,a_{k}^{\sim}\right)=\tau\left(a_{1},\ldots,a_{k}\right)\subseteq\prod_{i=1}^{k}\tau\left(a_{i}\right)=\prod_{i=1}^{k}\tau\left(a_{i}^{\sim}\right)\subseteq\prod_{i=1}^{k}\sigma\left(a_{i}^{\sim}\right)$$

is a nonempty compact subset.

Theorem 3.4. Let τ be a subspectrum on a unital associative algebra A. The correspondence τ^{\sim} over all tuples in $A / \operatorname{Rad}_{\tau}(A)$ is a subspectrum on the commutative algebra $A / \operatorname{Rad}_{\tau}(A)$.

Proof. Take a k-tuple $a^{\sim} = (a_1^{\sim}, \ldots, a_k^{\sim})$ in $A / \operatorname{Rad}_{\tau}(A)$ and a noncommutative polynomial $p(e) = \sum_{\nu} \alpha_{\nu} e^{\nu} \in \mathfrak{F}_k(e)$. Then

$$p(a^{\sim}) = \Gamma_{a^{\sim}}(p(e)) = \sum_{\nu} \alpha_{\nu} (a^{\sim})^{\nu} = \sum_{\nu} \alpha_{\nu} \pi_{\tau}^{(k)}(a)^{\nu} = \sum_{\nu} \alpha_{\nu} \pi_{\tau} (a^{\nu})$$
$$= \pi_{\tau} \left(\sum_{\nu} \alpha_{\nu} a^{\nu} \right) = \pi_{\tau} (\Gamma_{a} (p(e))) = p(a)^{\sim}.$$

If $p(e) = (p_1(e), \dots, p_m(e))$ is a *m*-tuple in $\mathfrak{F}_k(e)$, then $\tau^{\sim}(p(a^{\sim})) = \tau^{\sim}(p(a)^{\sim}) = \tau(p(a)) = p(\tau(a)) = p(\tau^{\sim}(a^{\sim})).$

It remains to appeal to Lemmas 3.1, 3.2 and 3.3.

In particular, if τ is a subspectrum on a Banach algebra A and $\operatorname{Rad}_{\tau}(A)$ is closed, then τ^{\sim} is a subspectrum on the commutative Banach algebra $A/\operatorname{Rad}_{\tau}(A)$. In the next section we prove that $\operatorname{Rad}_{\tau}(A)$ is closed for each subspectrum on a Banach algebra A.

Definition 3.5. Let τ be a subspectrum on a unital associative algebra A. We say that a subspace $I \subseteq A$ is τ -singular if $0 \in \tau(c)$ for any tuple $c \in I^k$, $k \in \mathbb{N}$. A linear functional $\varphi \in A^*$ is said to be a τ -singular if its kernel ker (φ) is a τ -singular subspace in A. The set of all τ -singular functionals on A is denoted by K_{τ} .

The concept of a τ -singular subspace is motivated by the key reasoning in [15, Lemma 2.3] for the commutative Banach algebra case.

The following simple lemma will be useful later.

Lemma 3.6. If $I \subseteq A$ is a τ -singular subspace, then $1 \notin I$.

Proof. Being $\tau(1) \subseteq \sigma(1) = \{1\}$ a nonempty subset, we conclude that $\tau(1) = \{1\}$. Then $0 \notin \tau(1)$ and therefore $1 \notin I$.

Proposition 3.7. Each τ -singular subspace in A is annihilated by a τ -singular functional on A.

Proof. Let I is a τ -singular subspace in A. One has to prove that $\varphi(I) = \{0\}$ for a certain τ -singular functional $\varphi \in A^*$. Consider a family \mathcal{E} of all τ -singular subspaces $F \subseteq A$ such that $I \subseteq F$, that is, $0 \in \tau(c)$ for any tuple $c = (c_1, \ldots, c_k) \in$ $F^k, k \in \mathbb{N}$ (Definition 3.5). If $\{F_\alpha\}$ is a linearly ordered family in \mathcal{E} , then $\cup_{\alpha} F_{\alpha} \in \mathcal{E}$. By Zorn's lemma, there is a maximal element in \mathcal{E} , say J. By Lemma 3.6, $1 \notin J$.

Let us prove that $A = J \oplus \mathbb{C}1$. If the latter does not hold, then $\mathbb{C}u \cap (J \oplus \mathbb{C}1) = \{0\}$ for a certain $u \in A$, that is, $J \cap (\mathbb{C}u \oplus \mathbb{C}1) = \{0\}$. Let $c = (c_1, \ldots, c_k) \in J^k$ be a k-tuple in J, and let $(c, u) = (c_1, \ldots, c_k, u) \in A^{k+1}$. Since $0 \in \tau(c)$, it follows that $(0, \lambda) \in \tau(c, u)$ or $0 \in \tau(c, u - \lambda)$ for some $\lambda \in \mathbb{C}$. Thus

$$K(c) = \{\mu \in \mathbb{C} : 0 \in \tau (c, u - \mu)\}$$

is a nonempty compact subset in \mathbb{C} . Using (3.1) (namely, the Projection Property), we obtain that $K(c, b) \subseteq K(c) \cap K(b)$ for all tuples c, b in J. Hence there is a common point $\lambda_0 \in K(c)$ for all tuples c in J. Put $x = u - \lambda_0 1 \in \mathbb{C}u \oplus \mathbb{C}1$. Thus $x \notin J$ and $0 \in \tau(c, x)$ for all tuples c in J. Consider the subspace $\overline{J} = J \oplus \mathbb{C}x \subseteq A$. If $c + \xi x = (c_1 + \xi_1 x, \dots, c_k + \xi_k x) \in \overline{J}^k$ (herein $\xi = (\xi_1, \dots, \xi_k) \in \mathbb{C}^k$) is a k-tuple in \overline{J} , then

$$\tau \left(c + \xi x \right) = \left\{ \lambda + \mu \xi : \left(\lambda, \mu \right) \in \tau \left(c, x \right) \right\},\,$$

which in turn implies that $0 \in \tau$ $(c + \xi x)$. Thus $\overline{J} \in \mathcal{E}$ and $J \neq \overline{J}$, a contradiction. Consequently, $A = J \oplus \mathbb{C}1$, that is, $J = \ker(\varphi)$ for some $\varphi \in A^*$. But φ is a τ -singular functional, for $J \in \mathcal{E}$. It remains to note that $I \subseteq J$.

Now let τ be a subspectrum on A and let

$$R_{\tau} = \left\{ a \in A : 0 \notin \tau \left(a \right) \right\}. \tag{3.2}$$

Note that $R_{\tau} \cap \ker(\varphi) = \emptyset$ for each $\varphi \in K_{\tau}$.

Regularities

Corollary 3.8. $A \setminus R_{\tau} = \bigcup \{ \ker(\varphi) : \varphi \in K_{\tau} \}.$

Proof. Take $a \in A \setminus \mathbb{R}_{\tau}$. Then $0 \in \tau(a)$. Consider the subspace $\mathbb{C}a$ in A generated by a and let $\xi a = (\xi_1 a, \ldots, \xi_k a)$ be a k-tuple in $\mathbb{C}a$, where $\xi = (\xi_1, \ldots, \xi_k) \in \mathbb{C}^k$. Let $p_i(e) = \xi_i e, 1 \leq i \leq k$, be polynomials in $\mathfrak{F}_1(e)$, and let $p(e) = (p_1(e), \ldots, p_k(e)) \in \mathfrak{F}_1(e)^k$. Then

$$\tau\left(\xi a\right) = \tau\left(p\left(a\right)\right) = p\left(\tau\left(a\right)\right) = \left\{p\left(\lambda\right) : \lambda \in \tau\left(a\right)\right\} = \left\{\lambda\xi : \lambda \in \tau\left(a\right)\right\} \subseteq \mathbb{C}^{k}.$$

In particular, $0 \in \tau$ (ξa), that is, $\mathbb{C}a$ is a τ -singular subspace in A. By Proposition 3.7, $a \in \ker(\varphi)$ for some τ -singular functional $\varphi \in A^*$. Thus $a \in \ker(\varphi)$ for some $\varphi \in K_{\tau}$.

Corollary 3.9. If τ is a subspectrum on A, then

$$\operatorname{Rad}_{\tau}(A) = \bigcap \left\{ \ker\left(\varphi\right) : \varphi \in K_{\tau} \right\}.$$

Proof. Take $a \notin \operatorname{Rad}_{\tau}(A)$. Then $\lambda \in \tau(a)$ for some nonzero $\lambda \in \mathbb{C}$, that is, $0 \in \tau(a - \lambda)$. The latter means that $a - \lambda \in A \setminus R_{\tau}$. Using Corollary 3.8, infer that $a - \lambda \in \ker(\varphi)$ for some $\varphi \in K_{\tau}$. It follows that $\varphi(a) = \lambda \varphi(1) \neq 0$ by virtue of Lemma 3.6. Thereby $a \notin \ker(\varphi)$. So,

$$\bigcap \left\{ \ker \left(\varphi\right) : \varphi \in K_{\tau} \right\} \subseteq \operatorname{Rad}_{\tau} \left(A\right).$$

Conversely, take $a \notin \ker(\varphi)$ for some $\varphi \in K_{\tau}$. Then $\varphi(a) \neq 0$ and

$$\varphi\left(a-\varphi\left(a\right)\varphi\left(1\right)^{-1}\right)=\varphi\left(a\right)-\varphi\left(a\right)\varphi\left(1\right)^{-1}\varphi\left(1\right)=0,$$

that is, $a - \varphi(a) \varphi(1)^{-1} \in \ker(\varphi)$ (see Lemma 3.6). Since $\varphi \in K_{\tau}$, it follows that $0 \in \tau \left(a - \varphi(a) \varphi(1)^{-1}\right)$. This in turn implies that $\varphi(a) \varphi(1)^{-1} \in \tau(a)$, that is, $\tau(a) \neq \{0\}$ or $a \notin \operatorname{Rad}_{\tau}(A)$. Thus $\operatorname{Rad}_{\tau}(A) \subseteq \bigcap \{\ker(\varphi) : \varphi \in K_{\tau}\}$. \Box

Corollary 3.10. Let τ be a subspectrum on A. Then τ^{\sim} is a subspectrum on the algebra $A/\operatorname{Rad}_{\tau}(A)$ with the properties $\pi_{\tau}(R_{\tau}) = R_{\tau^{\sim}}$ and $\pi^*_{\tau}(K_{\tau^{\sim}}) = K_{\tau}$, where

$$\pi_{\tau}^* : \left(A / \operatorname{Rad}_{\tau}(A)\right)^* \to A^*$$

is the dual of the quotient mapping $\pi_{\tau} : A \to A/\operatorname{Rad}_{\tau}(A)$.

Proof. Using Lemma 3.1, infer that $A / \operatorname{Rad}_{\tau}(A)$ is commutative. Moreover, τ^{\sim} is a subspectrum on $A / \operatorname{Rad}_{\tau}(A)$ as we have shown in Theorem 3.4. The equality $\pi_{\tau}(R_{\tau}) = R_{\tau^{\sim}}$ follows directly from (3.2) and Lemma 3.2.

Now take $\psi \in K_{\tau^{\sim}}$ and put $\varphi = \psi \cdot \pi_{\tau}$. If a is a k-tuple in ker (φ) , then a^{\sim} is a k-tuple in ker (ψ) and $0 \in \tau^{\sim} (a^{\sim}) = \tau (a)$ by virtue of Lemma 3.2. Thus φ is a τ -singular functional. Therefore $\pi_{\tau}^* (K_{\tau^{\sim}}) \subseteq K_{\tau}$. Conversely, take $\varphi \in K_{\tau}$. By Corollary 3.9, $\varphi = \psi \cdot \pi$ for some $\psi \in (A/\operatorname{Rad}_{\tau}(A))^*$. Again by Lemma 3.2, ψ is τ^{\sim} -singular.

A result of Zelazko [22] asserts that for each subspectrum τ on a commutative Banach algebra B there corresponds a unique compact subset $K \subseteq \text{Char}(B)$ such that $\tau(a) = \{\varphi^{(k)}(a) : \varphi \in K\}$ for any k-tuple a in B. In the pure algebraic context this result has the following generalization.

Theorem 3.11. Let τ be a subspectrum on a unital associative algebra A. Then

$$(a_1,\ldots,a_k) = \{(\overline{\varphi}(a_1),\ldots,\overline{\varphi}(a_k)) : \varphi \in K_\tau\}$$

for all tuples (a_1, \ldots, a_k) in A, where $\overline{\varphi} = \varphi(1)^{-1} \varphi$ (see Lemma 3.6).

Proof. Let $a = (a_1, \ldots, a_k)$ and take $\mu \in \tau(a)$. Then $0 \in \tau(a - \mu)$. Consider a subspace F in A generated by $a - \mu$. Each element of F has the form $p(a - \mu)$ for some $p(e) \in \mathfrak{F}_k(e)$ such that p(0) = 0. Using the Spectral Mapping Property (3.1), we conclude that F is a τ -singular subspace in A. On account of Proposition 3.7, $F \subseteq \ker(\varphi)$ for some τ -singular functional $\varphi \in A^*$. Thus $\varphi(a_i - \mu_i) = 0$ or $\varphi(a_i) = \mu_i \varphi(1), 1 \leq i \leq k$. It follows that $\overline{\varphi}(a_i) = \mu_i$ or $\overline{\varphi}^{(k)}(a) = \mu$. Conversely, take $\varphi \in K_{\tau}$. Then $a_i - \overline{\varphi}(a_i) \in \ker(\varphi)$ for all i. Being φ a τ -singular functional, we deduce that $0 \in \tau(a - \overline{\varphi}^{(k)}(a))$ or $\overline{\varphi}^{(k)}(a) \in \tau(a)$. Thus $\tau(a) = \{\overline{\varphi}^{(k)}(a) : \varphi \in K_{\tau}\}$.

4. Regularities

In this section we introduce regularities in a unital associative algebra and investigate their properties.

Let A be a unital associative algebra and let R be a nontrivial subset in A. As in [15], we introduce the *envelope* $R^{\#}$ of R in A as

$$A \backslash R^{\#} = \bigcup \left\{ \ker \left(\varphi \right) : \varphi \in A^*, R \cap \ker \left(\varphi \right) = \emptyset \right\}.$$

By its very definition, $R \subseteq R^{\#}$.

Lemma 4.1. $R^{\#\#} = R^{\#}$.

Proof. Since $R^{\#} \subseteq R^{\#\#}$, it suffices to prove that $R^{\#\#} \subseteq R^{\#}$. Take $a \in A \setminus R^{\#}$. Then $a \in \ker(\varphi), R \cap \ker(\varphi) = \emptyset$, for some $\varphi \in A^*$. But $\ker(\varphi) \subseteq A \setminus R^{\#}$, that is, $\ker(\varphi) \cap R^{\#} = \emptyset$. The latter in turn implies that $a \in A \setminus R^{\#\#}$.

The following definition plays a key role in our consideration.

Definition 4.2. Let A be a unital algebra. A nonempty subset $R \subseteq A$ is said to be a regularity in A if it possesses the following property

$$ab \in R$$
 iff $a, b \in R$.

The following two assertions provide us with examples of regularities.

Lemma 4.3. The set G(A) of all invertible elements in a unital algebra A is a regularity in A whenever A is commutative modulo its Jacobson radical. Moreover, $G(A) = G(A)^{\#}$ if A is a Banach algebra.

Regularities

Proof. If $a, b \in A$, then $\sigma(ab) = \sigma((ab)^{\sim})$, where $(ab)^{\sim}$ is the image of ab in the commutative algebra $A / \operatorname{Rad}(A)$. But $(ab)^{\sim} = a^{\sim}b^{\sim}$. Therefore, $0 \notin \sigma(ab)$ iff both a^{\sim} and b^{\sim} are invertible in $A / \operatorname{Rad}(A)$. Thus $0 \notin \sigma(a^{\sim}) = \sigma(a)$ and $0 \notin \sigma(b^{\sim}) = \sigma(b)$, that is, $a, b \in G(A)$. Thus G(A) is a regularity in A.

Now assume that A is a Banach algebra. Take $a \notin G(A)$. Then a^{\sim} is not invertible in $A / \operatorname{Rad}(A)$ and therefore belongs to a maximal ideal I of $A / \operatorname{Rad}(A)$. But $I = \ker(\phi)$ for some character ϕ of the commutative algebra $A / \operatorname{Rad}(A)$ [4, 1.3.2]. It follows that $a \in \ker(\varphi)$, where $\varphi = \phi \pi \in \operatorname{Char}(A)$. But $G(A) \cap \ker(\varphi) = \emptyset$. Therefore $a \notin G(A)^{\#}$. Thus $G(A) = G(A)^{\#}$.

Proposition 4.4. Let τ be a subspectrum on A and let $R_{\tau} = \{a \in A : 0 \notin \tau(a)\}$ (see (3.2)). Then R_{τ} is a regularity in A and $R_{\tau} = R_{\tau}^{\#}$.

Proof. With $\tau(0) = \{0\}$ in mind, infer $0 \notin R_{\tau}$. Moreover, $1 \in R_{\tau}$, for $\tau(1) \subseteq \sigma(1) = \{1\}$. Thus $\emptyset \neq R_{\tau} \neq A$. Using Corollary 3.8, we obtain that

$$A \setminus R_{\tau} = \bigcup \left\{ \ker \left(\varphi \right) : \varphi \in K_{\tau} \right\}.$$

But $\bigcup \{ \ker(\varphi) : \varphi \in K_{\tau} \} \subseteq A \setminus R_{\tau}^{\#}$, that is, $A \setminus R_{\tau} \subseteq A \setminus R_{\tau}^{\#}$. Thus $R_{\tau} = R_{\tau}^{\#}$.

Since $\tau(ab) = \{\lambda \mu : (\lambda, \mu) \in \tau(a, b)\}$, it follows that $0 \notin \tau(ab)$ iff $0 \notin \tau(a)$ and $0 \notin \tau(b)$. Whence R_{τ} is a regularity in A.

Now let us prove the main result of this section.

Theorem 4.5. Let R be a regularity in A. Then $G(A) \subseteq R$. Moreover, if A is a Banach algebra and $\varphi \in A^*$ is such that $R \cap \ker(\varphi) = \emptyset$, then $\ker(\varphi) = \ker(\phi)$ for some $\phi \in \operatorname{Char}(A)$. In particular,

$$A \setminus R^{\#} = \bigcup \left\{ \ker \left(\varphi\right) : \varphi \in \operatorname{Char}\left(A\right), R \cap \ker \left(\varphi\right) = \emptyset \right\}.$$

Proof. Take $a \in R$. Then $a = a \cdot 1 \in R$ and therefore $1 \in R$. Further, if $a \in G(A)$, then $1 = aa^{-1} \in R$, which in turn implies that $a \in R$. Thus $G(A) \subseteq R$.

Now suppose A is a Banach algebra and let $\varphi \in A^*$ such that $R \cap \ker(\varphi) = \emptyset$. Taking into account that $G(A) \subseteq R$, we obtain $G(A) \cap \ker(\varphi) = \emptyset$. Using the Gleason-Kahane-Zelazko theorem, we deduce that $\phi = \varphi(1)^{-1} \varphi \in \operatorname{Char}(A)$. But $\ker(\varphi) = \ker(\phi)$.

Finally, the union over all the characters indicated above belongs to $A \setminus R^{\#}$. Conversely, take $a \in A \setminus R^{\#}$. Then $a \in \ker(\varphi)$ and $R \cap \ker(\varphi) = \emptyset$ for some functional $\varphi \in A^*$. But $\ker(\varphi) = \ker(\phi)$ for some $\phi \in \operatorname{Char}(A)$.

Corollary 4.6. If R is a regularity in a Banach algebra A, then so is $R^{\#}$.

Proof. Take $a, b \in R^{\#}$. If $ab \notin R^{\#}$, then $ab \in \ker(\varphi)$ for some $\varphi \in \operatorname{Char}(A)$, $R \cap \ker(\varphi) = \emptyset$, by virtue of Theorem 4.5. Then

$$0 = \varphi(ab) = \varphi(a) \varphi(b).$$

Hence a or b belongs to ker (φ) , that is, a or b does not belong $R^{\#}$, a contradiction.

Conversely, if $a \notin R^{\#}$ or $b \notin R^{\#}$, then $\varphi(ab) = \varphi(a)\varphi(b) = 0$ for some $\varphi \in$ Char $(A), R \cap \ker(\varphi) = \emptyset$ (Theorem 4.5), that is, $ab \notin R^{\#}$. Whence $R^{\#}$ is a regularity in A.

Now let τ be a subspectrum on a unital Banach algebra A and let $\mathcal{K}_{\tau} \subseteq$ Char (A) be the set of all τ -singular characters of A. Note that $\mathcal{K}_{\tau} \subseteq \mathcal{K}_{\tau}$ and ker $(\varphi) \cap \mathcal{R}_{\tau} = \emptyset$ for all $\varphi \in \mathcal{K}_{\tau}$ (see Section 3).

Corollary 4.7. Let τ be a subspectrum on a unital Banach algebra A. If $\varphi \in K_{\tau}$, then ker $(\varphi) = \text{ker}(\phi)$ for some $\phi \in \mathcal{K}_{\tau}$. In particular,

$$A \setminus R_{\tau} = \bigcup \left\{ \ker \left(\varphi \right) : \varphi \in \mathcal{K}_{\tau} \right\}.$$

Moreover, R_{τ} is open in A. Thus R_{τ} has an open proper envelope $R_{\tau}^{\#}$ which coincides with itself.

Proof. Take $\varphi \in K_{\tau}$. Using Proposition 4.4 and Theorem 4.5, we infer that $\ker(\varphi) = \ker(\phi)$ for some $\phi \in \operatorname{Char}(A)$. But $\ker(\varphi)$ is a τ -singular subspace, therefore $\phi \in \mathcal{K}_{\tau}$. Thus $A \setminus R_{\tau} = \bigcup {\ker(\varphi) : \varphi \in \mathcal{K}_{\tau}}.$

Finally, take $a \in R_{\tau}$. Then $s_a = \min \{ |\lambda| : \lambda \in \tau(a) \} > 0$ and if $||b|| < s_a$, then $a + b \in R_{\tau}$.

Corollary 4.8. Let τ be a subspectrum on a unital Banach algebra A. Then

$$\tau\left(a\right) = \left\{\varphi^{\left(k\right)}\left(a\right) : \varphi \in \mathcal{K}_{\tau}\right\}$$

for all tuples $a \in A^k$, $k \in \mathbb{N}$. Moreover, \mathcal{K}_{τ} is a compact subspace in Char(A).

Proof. First note that $\overline{\phi}(x) = \phi(1)^{-1} \phi(x) = \phi(x)$ for all $\phi \in \text{Char}(A)$ and $x \in A$. Thus

$$\left\{\varphi^{\left(k\right)}\left(a\right):\varphi\in\mathcal{K}_{\tau}\right\}\subseteq\left\{\overline{\varphi}^{\left(k\right)}\left(a\right):\varphi\in K_{\tau}\right\}.$$

On account of Theorem 3.11, it suffices to prove that for any $\varphi \in K_{\tau}$ there corresponds $\phi \in \mathcal{K}_{\tau}$ such that $\overline{\varphi} = \phi$. By Corollary 4.7, ker $(\varphi) = \text{ker }(\phi)$ for some $\phi \in \mathcal{K}_{\tau}$. Then $\phi = \alpha \varphi$ for some $\alpha \in \mathbb{C}$. But $1 = \phi(1) = \alpha \varphi(1)$, that is, $\alpha = \varphi(1)^{-1}$ (Lemma 3.6). Thus $\phi = \overline{\varphi}$.

Now let us prove that \mathcal{K}_{τ} is compact with respect to the topology inherited from Char (A). It suffices to prove \mathcal{K}_{τ} is closed in Char (A). Take $\varphi \in \text{Char}(A) \setminus \mathcal{K}_{\tau}$. Then ker (φ) is not τ -singular, that is, $0 \notin \tau$ (b) for some (say k-)tuple b in ker (φ). Let $\varepsilon > 0$ be the distance between the origin and τ (b) in \mathbb{C}^k , and let

$$U_{b,\eta}\left(\varphi\right) = \left\{\phi \in \operatorname{Char}\left(A\right) : \max_{1 \le i \le k} \left|\phi\left(b_{i}\right) - \varphi\left(b_{i}\right)\right| < \eta\right\}$$

be a neighborhood of φ in Char(A), where $\eta = (2k)^{-1/2} \varepsilon$. Take $\phi \in U_{b,\eta}(\varphi)$. Then max $|\phi(b_i)| < (2k)^{-1/2} \varepsilon$. Moreover,

$$(\phi(b_1),\ldots,\phi(b_k))\notin \tau(b),$$

for in the contrary case we would have $\varepsilon^2 \leq \sum_{i=1}^k |\phi(b_i)|^2 \leq k \max |\phi(b_i)|^2 < \varepsilon^2/2$. It follows that $\phi \notin \mathcal{K}_{\tau}$. Thus $U_{b,\eta}(\varphi) \cap \mathcal{K}_{\tau} = \emptyset$.

Regularities

Corollary 4.9. Let τ be a subspectrum on a unital Banach algebra A. Then

$$\operatorname{Rad}_{\tau}(A) = \bigcap \left\{ \ker(\varphi) : \varphi \in \mathcal{K}_{\tau} \right\}$$

In particular, $\operatorname{Rad}_{\tau}(A)$ is a closed two-sided ideal in A.

Proof. It suffices to apply Corollary 3.9 and Corollary 4.7.

Corollary 4.10. Let τ be a subspectrum on a unital Banach algebra A. Then τ^{\sim} is a subspectrum on the commutative Banach algebra $A/\operatorname{Rad}_{\tau}(A)$ and $\pi^*_{\tau}(\mathcal{K}_{\tau^{\sim}}) = \mathcal{K}_{\tau}$.

Proof. Using Lemma 3.1 and Corollary 4.9, we infer that $A/\operatorname{Rad}_{\tau}(A)$ is a commutative Banach algebra. Moreover, τ^{\sim} is a subspectrum on $A/\operatorname{Rad}_{\tau}(A)$ as we have shown in Lemma 3.2.

Now take $\psi \in \mathcal{K}_{\tau}$. Then $\psi \in \text{Char}(A/\text{Rad}_{\tau}(A))$ such that ψ is τ^{\sim} -singular. Put $\varphi = \pi_{\tau}^{*}(\psi) = \psi \cdot \pi_{\tau}$. Evidently, $\varphi \in \text{Char}(A)$ and $\varphi \in K_{\tau}$ by virtue of Corollary 3.10. So $\varphi \in \mathcal{K}_{\tau}$. Conversely, take $\varphi \in \mathcal{K}_{\tau}$. By Corollary 4.9,

$$\varphi = \psi \cdot \pi_{\tau}, \ \psi \in \operatorname{Char}\left(A / \operatorname{Rad}_{\tau}(A)\right).$$

Again by Corollary 3.10, $\psi \in K_{\tau^{\sim}}$. Thus $\pi^*_{\tau}(\mathcal{K}_{\tau^{\sim}}) = \mathcal{K}_{\tau}$.

5. Subspectrum associated to a regularity in a Banach algebra

In this section we construct a subspectrum called Harte type spectrum by means of a regularity in a Banach algebra. That will reverse (in a certain sense) the process of creating regularities from subspectra.

Let R be a regularity in a unital Banach algebra A and let

$$K_R = \{ \varphi \in \operatorname{Char} (A) : R \cap \ker (\varphi) = \emptyset \}.$$

According to Theorem 4.5,

$$A \setminus R^{\#} = \bigcup \left\{ \ker \left(\varphi \right) : \varphi \in K_R \right\}.$$
(5.1)

Let us introduce a closed two-sided ideal

$$R(A) = \bigcap \left\{ \ker \left(\varphi\right) : \varphi \in K_R \right\}$$

in A. Evidently, Rad $A \subseteq R(A)$. Moreover, since $\varphi([x, y]) = 0, x, y \in A, \varphi \in$ Char(A), it follows that A/R(A) is a semisimple commutative Banach algebra.

Lemma 5.1. If R has an open proper envelope $R^{\#}$ in A, then K_R is a nonempty compact space.

Proof. Since $R^{\#}$ is proper, it follows that $A/R^{\#} \neq \emptyset$ and therefore $K_R \neq \emptyset$. It remains to prove that K_R is a closed subset in Char (A). Take a net $\{\varphi_{\iota}\}$ in K_R which tends to $\varphi \in \text{Char}(A)$. If $\varphi \notin K_R$, then $\varphi(x) = 0$ for a certain $x \in R$. Note that $x - \varphi_{\iota}(x) \in \ker(\varphi_{\iota})$ and $\ker(\varphi_{\iota}) \cap R^{\#} = \emptyset$ (see Lemma 4.1). Thus $\{x - \varphi_{\iota}(x)\}$ is a net in the closed set $A \setminus R^{\#}$ and it tends to x. Consequently, $x \in A \setminus R^{\#}$ and thereupon $x \notin R$, a contradiction. Thus $\varphi \in K_R$ and K_R is closed in Char (A). \Box

353

Now let $a = (a_1, \ldots, a_k) \in A^k$ be a k-tuple in A. It determines a continuous mapping

$$\widehat{a} = (\widehat{a}_1, \dots, \widehat{a}_k) : K_R \to \mathbb{C}^k, \quad \widehat{a}(\varphi) = \varphi^{(k)}(a) = (\varphi(a_1), \dots, \varphi(a_k))$$

Actually, it is the restriction to K_R of the continuous mapping \hat{a} : Char $(A) \to \mathbb{C}^k$, $\hat{a}(\varphi) = \varphi^{(k)}(a)$ determined by the Gelfand transform. Put

$$\tau_R(a) = \operatorname{im}\left(\widehat{a}\right)$$

which is a nonempty compact subset in \mathbb{C}^k thanks to Lemma 5.1.

Lemma 5.2. Let $a \in A^k$ and let $x \in R(A)^k$. Then $\tau_R(a + x) = \tau_R(a)$.

Proof. Note that $\hat{x}(\varphi) = 0$ for all $\varphi \in K_R$. Then $\tau_R(a+x) = \operatorname{im}(\widehat{a+x}) = \operatorname{im}(\widehat{a}+\widehat{x}) = \operatorname{im}(\widehat{a}) = \tau_R(a)$.

Proposition 5.3. Let R be a regularity in a Banach algebra A whose envelope is open and proper. Then the correspondence τ_R over all tuples in A is a subspectrum on A. Moreover, $R_{\tau_R} = R^{\#}$ and $\operatorname{Rad}_{\tau_R} A = R(A)$.

Proof. Take a k-tuple a in A, and m-tuple p(e) in $\mathfrak{F}_k(e)$. Then p(a) is a m-tuple in A and

$$\widehat{p(a)}(\varphi) = \varphi^{(m)}(p(a)) = (\varphi(p_1(a)), \dots, \varphi(p_m(a))) = (p_1(\widehat{a}(\varphi)), \dots, p_m(\widehat{a}(\varphi)))$$
$$= p(\widehat{a}(\varphi)).$$

Therefore

$$_{R}(p(a)) = \operatorname{im}\left(\widehat{p(a)}\right) = p(\operatorname{im}(\widehat{a})) = p(\tau_{R}(a)),$$

that is, (3.1) holds. Further,

au

$$R_{\tau_R} = \{a \in A : 0 \notin \tau_R(a)\} = \{a \in A : \hat{a}(\varphi) \neq 0, \varphi \in K_R\}$$
$$= \{a \in A : \varphi(a) \neq 0, \varphi \in K_R\} = \{a \in A : a \notin \ker(\varphi), \varphi \in K_R\}$$
$$= A \setminus \bigcup \{\ker(\varphi) : \varphi \in K_R\} = R^{\#},$$

that is, $R_{\tau_R} = R^{\#}$.

Finally,

$$\operatorname{Rad}_{\tau_{R}} A = \{a \in A : \tau_{R} (a) = \{0\}\} = \{a \in A : \varphi (a) = 0, \varphi \in K_{R}\}$$
$$= \bigcap \{\ker (\varphi) : \varphi \in K_{R}\} = R (A),$$

that is, $R(A) = \operatorname{Rad}_{\tau_R} A$.

By Lemma 3.1, Corollary 4.9 and Proposition 5.3, infer that A/R(A) is a commutative semisimple Banach algebra. The mapping

$$T: A \to \mathcal{C}(K_R), \quad T(a) = \widehat{a}, \quad \widehat{a}(\varphi) = \varphi(a),$$

is a contractive homomorphism. Evidently, ker (T) = R(A) and it can be factored as a composition of the quotient mapping $A \to A/R(A)$ and a contractive homomorphism $A/R(A) \to C(K_R)$ (see Lemma 5.2). Denote the range of T by B, which is a unital subalgebra in $C(K_R)$.

Lemma 5.4. $T(R^{\#}) = B \cap G(\mathcal{C}(K_R)).$

Proof. If $a \in \mathbb{R}^{\#}$, then $\hat{a}(\varphi) = \varphi(a) \neq 0$ for all $\varphi \in K_R$, that is, the function \hat{a} is invertible in $\mathcal{C}(K_R)$. Conversely, if \hat{a} is invertible in $\mathcal{C}(K_R)$, then $\varphi(a) \neq 0$ for all $\varphi \in K_R$. It follows that $0 \notin \tau_R(a)$, that is, $a \in R_{\tau_R}$. Using Proposition 5.3, infer that $a \in \mathbb{R}^{\#}$. Thus $T(\mathbb{R}^{\#}) = B \cap G(\mathcal{C}(K_R))$.

For a k-tuple \hat{a} in B we set

$$\gamma_R(\widehat{a}) = \left\{ \lambda \in \mathbb{C}^k : B(\widehat{a} - \lambda) \cap G(\mathcal{C}(K_R)) = \emptyset \right\}.$$

Note that γ_R is a subspectrum on B (see (2.1)).

Lemma 5.5. If R is a regularity in a unital Banach algebra A, then $R^{\#} = R^{\#} + R(A)$. In particular, if A(M) (respectively, (M)A) is the left ideal (respectively, right) in A generated by a subset $M \subseteq A$, then $A(M) \cap R^{\#} = \emptyset$ iff $(M) A \cap R^{\#} = \emptyset$.

Proof. If $a + x \notin R^{\#}$ for some $a \in R^{\#}$ and $x \in R(A)$, then $\varphi(a + x) = 0$ for some $\varphi \in K_R$ thanks to (5.1). Thereby $\varphi(a) = 0$, that is, $a \in A/R^{\#}$. So, $R^{\#} = R^{\#} + R(A)$.

Now let M be a subset in A such that $A(M) \cap R^{\#} = \emptyset$. Then

 $(M) A \subseteq A(M) + [A, M] \subseteq A(M) + R(A)$

(see Corollary 4.9). If $x \in (M) A \cap R^{\#}$, then x = y + z for some $y \in A(M)$ and $z \in R(A)$. It follows that $y = x - z \in R^{\#} + R(A) = R^{\#}$, a contradiction. \Box

Lemma 5.6. If φ is a γ_R -singular functional on B, then $A(a) \cap R^{\#} = \emptyset$ for any tuple a in ker (φT) .

Proof. If a is a k-tuple in ker (φT) , then so is \hat{a} in ker (φ) . Being φ a γ_R -singular, we obtain that $0 \in \gamma_R(\hat{a})$, that is, $B(\hat{a}) \cap G(\mathcal{C}(K_R)) = \emptyset$. The latter in turn implies that $A(a) \cap R^{\#} = \emptyset$, for $T(A(a) \cap R^{\#}) = B(\hat{a}) \cap G(\mathcal{C}(K_R))$ thanks to Lemmas 5.4 and 5.5.

Now let R be a regularity in a unital Banach algebra A whose envelope $R^{\#}$ is open and proper. By a *Harte type spectrum* σ_R associated with R we mean a set-valued function over all tuples in A determined by the rule

 $\sigma_R(a) = \{\lambda \in \mathbb{C}^k : A(a - \lambda) \cap R^{\#} = \emptyset\}$

for a k-tuple a in A. Using Lemma 4.1, we deduce that

$$\sigma_{R^{\#}}(a) = \left\{ \lambda \in \mathbb{C}^{k} : A(a-\lambda) \cap R^{\#\#} = \emptyset \right\}$$
$$= \left\{ \lambda \in \mathbb{C}^{k} : A(a-\lambda) \cap R^{\#} = \emptyset \right\}$$
$$= \sigma_{R}(a).$$

Furthermore, the left ideal $A(a - \lambda)$ generated by $a - \lambda$ in the definition of $\sigma_R(a)$ can be replaced with the right one as follows from Lemma 5.5. If R = G(A) the set $\sigma_R(a)$ is the known [13, 1.8.1] Harte spectrum of the tuple a.

Theorem 5.7. Let R be a regularity in a Banach algebra A whose envelope $R^{\#}$ is open and proper. Then

$$\sigma_R\left(a\right) = \tau_R\left(a\right)$$

for any k-tuple a in A. In particular, σ_R is a subspectrum on A. Moreover,

$$R_{\sigma_{R}} = R^{\#} and \operatorname{Rad}_{\sigma_{R}} A = R(A).$$

Proof. Take $\hat{a}(\varphi) \in \tau_R(a)$, where $\varphi \in K_R$. Since φ is a character of A, it follows that $A(a - \hat{a}(\varphi)) \subseteq \ker(\varphi)$. Therefore $A(a - \hat{a}(\varphi)) \cap R^{\#} = \emptyset$, that is, $\hat{a}(\varphi) \in \sigma_R(a)$. Hence $\tau_R(a) \subseteq \sigma_R(a)$. Conversely, assume that $0 \in \sigma_R(a)$. Then $A(a) \cap R^{\#} = \emptyset$. Using Lemmas 5.4 and 5.5, we infer that $B(\hat{a}) \cap G(\mathcal{C}(K_R)) = \emptyset$. Whence $0 \in \gamma_R(\hat{a})$. Since γ_R is a subspectrum on B, we deduce that $0 \in \gamma_R(\hat{b})$ for any tuple in the subspace in B generated by \hat{a} . Thus the subspace generated by \hat{a} is γ_R -singular. Using Proposition 3.7, we obtain that \hat{a} is a tuple in ker (ϕ) for some γ_R -singular functional $\phi \in B^*$. According to Lemma 5.6, $A(b) \cap R^{\#} = \emptyset$ for any tuple b in ker (φ) , where $\varphi = \phi T$. In particular, ker $(\varphi) \cap R = \emptyset$. By Theorem 4.5, one can assume that $\varphi \in \operatorname{Char}(A)$, that is, $\varphi \in K_R$. Moreover, a is a tuple in ker (φ) . Therefore $0 = \hat{a}(\varphi) \in \tau_R(a)$, that is, $\sigma_R(a) \subseteq \tau_R(a)$.

It remains to apply Proposition 5.3.

In this section we compare various subspectra and investigate when a subspectrum on a Banach algebra is reduced to the Harte type spectrum.

Let A be a unital Banach algebra. In Section 4, a correspondence

$$\tau \to R_{\tau}$$

between subspectra on A and regularities in A has been proposed. Further, in Section 5, we have considered a correspondence

$$R \to \sigma_R$$

between regularities and Harte type spectra, which can regarded as a right inverse of the first one, since $R_{\sigma_R} = R^{\#}$ by virtue of Theorem 5.7. Thus $R_{\sigma_R} = R$ whenever $R^{\#} = R$.

Theorem 6.1. Let τ be a subspectrum on a unital Banach algebra A. Then $\tau \subseteq \sigma_{R_{\tau}}$. Moreover, $\tau = \sigma_R$ for a regularity R that has an open and proper envelope $R^{\#}$ iff each $\varphi \in \text{Char}(A)$ with ker $(\varphi) \cap R = \emptyset$ is a τ -singular functional on A.

356

Regularities

Proof. Put $K_{R_{\tau}} = \{\varphi \in \text{Char}(A) : \ker(\varphi) \cap R_{\tau} = \emptyset\}$ and let a be a k-tuple in A. By Theorem 5.7, $\sigma_{R_{\tau}}(a) = \tau_{R_{\tau}}(a) = \hat{a}(K_{R_{\tau}})$. Moreover,

$$A/R_{\tau}^{\#} = \bigcup \left\{ \ker \left(\varphi\right) : \varphi \in K_{R_{\tau}} \right\}$$

thanks to Theorem 4.5. But $R_{\tau}^{\#} = R_{\tau}$ due to Proposition 4.4. Furthermore, on account of Corollary 4.7, $A \setminus R_{\tau} = \bigcup \{ \ker(\varphi) : \varphi \in \mathcal{K}_{\tau} \}$, where $\mathcal{K}_{\tau} \subseteq K_{R_{\tau}}$ is the subset of all τ -singular functionals. Using Corollary 4.8, infer that

$$\tau(a) = \left\{ \varphi^{(k)}(a) : \varphi \in \mathcal{K}_{\tau} \right\} = \widehat{a}(\mathcal{K}_{\tau}) \subseteq \widehat{a}(K_{R_{\tau}}) = \sigma_{R_{\tau}}(a),$$

that is, $\tau \subseteq \sigma_{R_{\tau}}$.

Now assume that $\tau = \sigma_R$ for some regularity R in A that has an open and proper envelope $R^{\#}$. Take $\varphi \in K_R$. We want to prove that $\varphi \in \mathcal{K}_{\tau}$. If a is a k-tuple in ker (φ) , then

$$0 = \varphi^{(k)}(a) = \widehat{a}(\varphi) \in \tau_R(a) = \sigma_R(a) = \tau(a)$$

by virtue of Theorem 5.7. Thus $0 \in \tau(a)$ for each tuple a in ker (φ) , that is, φ is τ -singular. Further, if $\varphi \in \mathcal{K}_{\tau}$, then $0 \in \tau(a)$ for each $a \in \ker(\varphi)$. It follows that $0 \in \sigma_R(a)$, that is, $A(a) \cap R^{\#} = \emptyset$. In particular, $a \notin R$. Thus ker $(\varphi) \cap R = \emptyset$, which means that $\varphi \in K_R$. Thus $K_R = \mathcal{K}_{\tau}$.

Conversely, assume that $\mathcal{K}_{\tau} = K_R$. Then

$$\sigma_R(a) = \widehat{a}(K_R) = \widehat{a}(\mathcal{K}_\tau) = \tau(a)$$

by virtue of Theorem 5.7 and Corollary 4.8. Thus $\sigma_R = \tau$.

Note that the inclusion $\tau \subseteq \sigma_{R_{\tau}}$ stated in Theorem 6.1 can be proper, that is, there are Harte type spectrum σ_R and subspectrum τ with the same regularity R (that is, $R_{\tau} = R$) such that $\tau \neq \sigma_R$. That can be characterized in terms of characters. Consider a regularity R in A that has an open and proper envelope $R^{\#}$. Then we have a nonempty compact subset $K_R \subseteq \text{Char}(A)$ (see Lemma 5.1) of all the σ_R -singular functionals (see Theorem 5.7). For a closed subset $K \subseteq K_R$ we define its A-rationally convex hull in Char(A) as

$$\widetilde{K} = \left\{ \varphi \in \operatorname{Char}\left(A\right) : \ker\left(\varphi\right) \subseteq \bigcup \left\{ \ker\left(\phi\right) : \phi \in K \right\} \right\}.$$

Note that $\bigcup \{ \ker(\phi) : \phi \in K \} \subseteq \bigcup \{ \ker(\phi) : \phi \in K_R \} = A \setminus R^{\#}$. It follows that $\ker(\varphi) \cap R = \emptyset$ for all $\varphi \in \widetilde{K}$, that is, $\widetilde{K} \subseteq K_R$. In terms of the Gelfand transform we have

$$\widetilde{K} = \left\{ \varphi \in \operatorname{Char}\left(A\right) : \forall x \in A, \quad x \in \ker\left(\varphi\right) \Longrightarrow \quad x \in \bigcup\left\{\ker\left(\phi\right) : \phi \in K\right\} \right\} \\ = \left\{ \varphi \in \operatorname{Char}\left(A\right) : \forall x \in A, \quad \widehat{x}\left(\varphi\right) = 0 \Longrightarrow \quad 0 \in \widehat{x}\left(K\right) \right\}$$

(see [15], [23]). Since $R_{\tau} = R$, it follows that $A \setminus R = \bigcup \{ \ker(\varphi) : \varphi \in \mathcal{K}_{\tau} \}$ (see Corollary 4.7). But

$$A \setminus R \supseteq A \setminus R^{\#} = \bigcup \left\{ \ker \left(\varphi \right) : \varphi \in K_R \right\}.$$

Therefore ker $(\varphi) \subseteq \bigcup \{ \ker(\phi) : \phi \in \mathcal{K}_{\tau} \}$ for all $\varphi \in K_R$. Thus

$$\widetilde{\mathcal{K}_{\tau}} = K_R \tag{6.1}$$

for a subspectrum with the regularity R.

Theorem 6.2. Let R be a regularity in A that has an open and proper envelope $R^{\#}$. Assume that \mathcal{K} is a nonempty closed subset in K_R such that $\widetilde{\mathcal{K}} = K_R$. Then there is a subspectrum τ on A such that $R_{\tau} = R^{\#}$, $\mathcal{K}_{\tau} = \mathcal{K}$ and $\tau \subseteq \sigma_R$. Namely, $\tau(a) = \widehat{a}(\mathcal{K})$ for a tuple a in A. Moreover, $\tau \neq \sigma_R$ iff $\mathcal{K} \neq K_R$.

Proof. Evidently, the relation $\tau(a) = \hat{a}(\mathcal{K})$ determines a subspectrum on A (see the proof of Proposition 5.3). Moreover,

$$R_{\tau} = \{a \in A : 0 \notin \tau(a)\} = \{a \in A : 0 \notin \widehat{a}(\mathcal{K})\}$$
$$= \{a \in A : \varphi(a) \neq 0, \varphi \in \mathcal{K}\} = A \setminus \bigcup \{\ker(\varphi) : \varphi \in \mathcal{K}\}$$
$$= A \setminus \bigcup \{\ker(\varphi) : \varphi \in \widetilde{\mathcal{K}}\} = A \setminus \bigcup \{\ker(\varphi) : \varphi \in K_R\}$$
$$= R^{\#}.$$

By Theorem 6.1, $\tau \subseteq \sigma_{R^{\#}} = \sigma_R$.

Now let us prove that $\mathcal{K}_{\tau} = \mathcal{K}$. Clearly $\mathcal{K} \subseteq \mathcal{K}_{\tau}$. Take $\varphi \in \mathcal{K}_{\tau}$. So, φ is a τ -singular character. We shall show that φ belongs to the closure of \mathcal{K} . Take a neighborhood

$$U_{a,\varepsilon}\left(\varphi\right) = \left\{\phi \in \operatorname{Char}\left(A\right) : \max_{1 \le i \le k} \left|\phi\left(a_{i}\right) - \varphi\left(a_{i}\right)\right| < \varepsilon\right\}$$

of φ in Char(A), where $a = (a_1, \ldots, a_k)$ is a k-tuple in A. Obviously, $a - \varphi^{(k)}(a)$ is a k-tuple in ker(φ). Therefore $0 \in \tau$ ($a - \varphi^{(k)}(a)$), which in turn implies that

$$\phi^{(k)}\left(a-\varphi^{(k)}\left(a\right)\right)=0$$

for some $\phi \in \mathcal{K}$. Thus $\phi^{(k)}(a) = \varphi^{(k)}(a)$. It follows that $\phi \in U_{a,\varepsilon}(\varphi) \cap \mathcal{K}$ for any ε . Taking into account that \mathcal{K} is closed, infer that $\varphi \in \mathcal{K}$.

Finally, if \mathcal{K} is a proper subset in K_R , then $\mathcal{K}_{\tau} \neq K_R$, for $\mathcal{K} = \mathcal{K}_{\tau}$ as we have just proven. By Theorem 6.1, $\tau \neq \sigma_R$. Conversely, if $\tau \neq \sigma_R$, then $\tau(a) \neq \sigma_R(a)$ for a k-tuple a in A. It follows that $0 \in \sigma_R(b) \setminus \tau(b)$ for a k-tuple b in A. According to Theorem 5.7, $b \in \ker(\varphi)^k$ for some $\varphi \in K_R$. But $0 \notin \tau(b)$. It follows that φ is not τ -singular, that is, $\varphi \notin \mathcal{K}_{\tau}$. Thereby $\varphi \notin \mathcal{K}$.

Thus each regularity may generate a family of subspectra different from Harte type spectrum. Let us illustrate this by an example.

Example. Let A be the algebra of all continuous functions on the closed ball

$$\overline{B}(0,1) = \left\{ (z,w) \in \mathbb{C}^2 : |z|^2 + |w|^2 \le 1 \right\}$$

358

IEOT

Regularities

centered at the origin that are holomorphic on its interior, and let B(0,1) be the unit open ball in \mathbb{C}^2 centered at the origin. The algebra A furnished with the uniform norm on $\overline{B}(0,1)$ is a commutative semisimple Banach algebra. Moreover,

$$\operatorname{Char}\left(A\right) = \overline{B}\left(0,1\right).$$

Take a closed subset $\mathcal{K} \subseteq \overline{B}(0,1)$ containing the topological (or Shilov) boundary of $\overline{B}(0,1)$. Then $\widetilde{\mathcal{K}} = \overline{B}(0,1)$. Indeed, first note that

$$\overline{B}(0,1)\setminus\mathcal{K}\subseteq B(0,1)$$

by assumption. Take $(z, w) \in \overline{B}(0, 1)$. Prove that $(z, w) \in \widetilde{\mathcal{K}}$. Assume that $(z, w) \notin \mathcal{K}$. Then $(z, w) \in B(0, 1)$. If f(z, w) = 0 for a function $f \in A$, then $f(z_0, w_0) = 0$ for some $(z_0, w_0), |z_0|^2 + |w_0|^2 = 1$, by the known property of holomorphic functions. But $(z_0, w_0) \in \mathcal{K}$, therefore $0 \in f(\mathcal{K})$. It follows that $(z, w) \in \widetilde{\mathcal{K}}$. Thus $\widetilde{\mathcal{K}} = \overline{B}(0, 1)$. Further, demonstrate that if τ is a subspectrum on A associated with \mathcal{K} (see Theorem 6.2), then \mathcal{K} is exactly the set of all τ -singular characters. Indeed, take $(a, b) \in \overline{B}(0, 1)$ which is a τ -singular character. We have to prove that $(a, b) \in \mathcal{K}$. It suffices to assume that $(a, b) \in B(0, 1)$. Consider the polynomials

$$p(z, w) = z - a$$
 and $q(z, w) = w - b$.

Obviously, p(a, b) = q(a, b) = 0. Since (a, b) is a τ -singular character, it follows that

$$0 \in \tau (p,q) = \{ (p(z,w), q(z,w)) : (z,w) \in \mathcal{K} \}.$$

Then $p(z_0, w_0) = q(z_0, w_0) = 0$ for some $(z_0, w_0) \in \mathcal{K}$. Whence $z_0 = a$ and $w_0 = b$, or $(a, b) = (z_0, w_0) \in \mathcal{K}$.

The example can be modified by extending the boundary as in [18].

Now we apply Theorem 6.2 to demonstrate a difference between Slodkowski and Harte type spectra. Let us start with simple assertions.

Lemma 6.3. Let $\alpha : A \to B$ be a unital algebra homomorphism between unital Banach algebras A and B, and let R be a regularity in B. Then so is $\alpha^{-1}(R)$ and

$$\alpha^{-1}(R)^{\#} \subseteq \alpha^{-1}(R^{\#}).$$

In particular, $\alpha^{-1}(R^{\#})$ is a regularity in A such that $\alpha^{-1}(R^{\#})^{\#} = \alpha^{-1}(R^{\#})$. Moreover, if R has a proper envelope $R^{\#}$ in B, then $\alpha^{-1}(R)$ has a proper envelope too.

Proof. Take $a, b \in A$. Then $ab \in \alpha^{-1}(R)$ iff $\alpha(ab) = \alpha(a) \alpha(b) \in R$ which in turn is possible (see Definition 4.2) iff both $\alpha(a), \alpha(b) \in R$, that is, $a, b \in \alpha^{-1}(R)$. Further, take $a \in A \setminus \alpha^{-1}(R^{\#})$. Then $\alpha(a) \notin R^{\#}$. So, $\psi(\alpha(a)) = 0$ for some $\psi \in B^*$, ker $(\psi) \cap R = \emptyset$. It follows that $a \in \ker(\varphi)$ and ker $(\varphi) \cap \alpha^{-1}(R) = \emptyset$, where $\varphi = \psi \alpha$. Thus $a \notin \alpha^{-1}(R)^{\#}$ and therefore $\alpha^{-1}(R)^{\#} \subseteq \alpha^{-1}(R^{\#})$.

Using Corollary 4.6, infer that $R^{\#}$ is a regularity in *B*. Therefore $\alpha^{-1}(R^{\#})$ is a regularity in *A*. Moreover, on account of the inclusion that we have just proven and Lemma 4.1, we deduce that

$$\alpha^{-1}(R^{\#}) \subseteq \alpha^{-1}(R^{\#})^{\#} \subseteq \alpha^{-1}(R^{\#}) = \alpha^{-1}(R^{\#}),$$

that is, $\alpha^{-1} (R^{\#})^{\#} = \alpha^{-1} (R^{\#}).$

Finally, if $R^{\#} \neq B$, then $0 \notin R^{\#}$ and therefore $0 \notin \alpha^{-1}(R^{\#})$. Since $\alpha^{-1}(R)^{\#} \subseteq \alpha^{-1}(R^{\#})$, it follows that $\alpha^{-1}(R)^{\#}$ is proper.

Corollary 6.4. (see [15, Proposition 3.3]) If $\alpha : A \to B$ is a bounded algebra homomorphism and R is a regularity in B such that $R = R^{\#}$ is open, then $\alpha^{-1}(R) = \alpha^{-1}(R)^{\#}$ is an open regularity too.

Now assume that A is a unital Banach algebra such that its attendant Lie algebra A_{fit} is nilpotent, and let $\alpha : A \to \mathcal{B}(X)$ be a unital bounded algebra homomorphism, that is, a bounded representation of A on the Banach space X. Put

$$R_{\alpha} = \alpha^{-1} \left(G\left(\mathcal{B}\left(X\right) \right) \right). \tag{6.2}$$

If B is the closure of the inverse closed envelope of the nilpotent Lie algebra $\alpha(A)$ in $\mathcal{B}(X)$, then B is an inverse closed Banach algebra, which is commutative modulo its Jacobson radical thanks to Turovskii's lemma. By Lemma 4.3, the set G(B) is a regularity in B and $G(B) = G(B)^{\#}$. Furthermore, $R_{\alpha} = \alpha^{-1}(B \cap G(\mathcal{B}(X))) = \alpha^{-1}(G(B))$. Using Lemma 6.3 and Corollary 6.4, infer that R_{α} is a regularity in A such that $R_{\alpha} = R_{\alpha}^{\#}$ is an open proper subset in A.

If a is a s-tuple in A, then the Lie subalgebra $\mathfrak{L}(a)$ in A_{lie} generated by a is nilpotent. Being a finitely generated nilpotent Lie algebra, $\mathfrak{L}(a)$ has a finite dimension. In particular, if $p(e) \in \mathfrak{F}_k(e)^m$ is a m-tuple of polynomials, then $\mathfrak{L}(p(a))$ is a finite dimensional nilpotent Lie subalgebra in A_{lie} . Consider a unital bounded representation $\alpha : A \to \mathcal{B}(X)$ and a s-tuple a in A. Then $\pi|_{\mathfrak{L}(a)} : \mathfrak{L}(a) \to \mathcal{B}(X)$ is a Lie representation. Using the Koszul complex generated by the $\mathfrak{L}(a)$ module $(X, \pi|_{\mathfrak{L}(a)})$, it is defined a family of Slodkowski spectra

$$\{\sigma_{\pi,k}(a), \sigma_{\delta,k}(a): k \ge 0\}$$

(see [8]), which are compact subsets in \mathbb{C}^k (see [3]). So, we have a family

$$\mathfrak{S} = \{\sigma_{\pi,k}, \sigma_{\delta,k} : k \ge 0\}$$

of set-valued functions over all tuples in A.

Proposition 6.5. Each $\tau \in \mathfrak{S}$ is a subspectrum on A.

Proof. Fix a s-tuple a in A and let $A(\mathfrak{L}(a))$ be the associative subalgebra in A generated by the nilpotent Lie algebra $\mathfrak{L}(a)$. The algebra $A(\mathfrak{L}(a))$ furnished with the finest locally convex topology is dominating over the module $(X, \pi|_{\mathfrak{L}(a)})$ in the sense of [8, Definition 4], we write

$$A(\mathfrak{L}(a)) \succ (X, \pi|_{\mathfrak{L}(a)}).$$

Regularities

Taking into account that $A(\mathfrak{L}(a))$ is comprising polynomials in elements of $\mathfrak{L}(a)$, we may apply the noncommutative spectral mapping theorems from [8]. As we have confirmed above each tuple p(a) in $A(\mathfrak{L}(a))$ generates a finite-dimensional nilpotent Lie subalgebra $\mathfrak{L}(p(a))$, therefore

$$\tau\left(p\left(a\right)\right) = p\left(\tau\left(a\right)\right)$$

for all $\tau \in \mathfrak{S}$, due to [8, Proposition 6 and Corollary 8]. Thus τ is a subspectrum on A.

Take
$$\tau \in \mathfrak{S}$$
 and $x \in A$. Then $\tau(x) = \sigma(\alpha(x))$ for all $k > 1$. Therefore
 $R_{\tau} = \{x \in A : 0 \notin \tau(x)\} = \{x \in A : 0 \notin \sigma(\alpha(x))\}$
 $= \{x \in A : \alpha(x) \in G(\mathcal{B}(X))\} = \alpha^{-1}(G(\mathcal{B}(X)))$
 $= R_{\alpha}$

(see (6.2)). Thus $R_{\alpha} = R_{\tau}$ for all $\tau \in \mathfrak{S}$. By Theorem 6.1, $\tau \subseteq \sigma_{R_{\alpha}}$. Moreover, using Corollary 4.8, infer that $\tau(a) = \{\varphi^{(s)}(a) : \varphi \in \mathcal{K}_{\tau}\}$. Therefore $\widetilde{\mathcal{K}_{\tau}} = K_{R_{\alpha}}$ by (6.1). In particular, we have a chain

$$\mathcal{K}_0 \subseteq \mathcal{K}_1 \subseteq \cdots \subseteq \mathcal{K}_n \subseteq \mathcal{K}_{n+1} \subseteq \cdots$$

of increasing compact subsets in $K_{R_{\alpha}}$ such that $\widetilde{\mathcal{K}_n} = K_{R_{\alpha}}$ for all $n \geq 0$, where $\mathcal{K}_n = \mathcal{K}_{\sigma_{\pi,n}}$. The known [16] example by Z. Slodkowski shows that spectra $\sigma_{\pi,n}$ are different for a Hilbert space representation α of a commutative Banach algebra. So, if $\sigma_{\pi,n} \neq \sigma_{\pi,n+1}$, then $\mathcal{K}_n \neq \mathcal{K}_{n+1}$ and \mathcal{K}_n turns out to be a nonempty proper closed subset in $K_{R_{\alpha}}$ such that $\widetilde{\mathcal{K}_n} = K_{R_{\alpha}}$ by virtue of Theorem 6.2.

Finally, let us consider the Taylor spectrum σ_T which is defined as

$$\sigma_T\left(a\right) = \sigma_{\pi,n}\left(a\right)$$

if a is a n-tuple in A. By Proposition 6.5, σ_T is a subspectrum on A, therefore

$$\sigma_{T}(a) = \left\{ \varphi^{(n)}(a) : \varphi \in \mathcal{K}_{\sigma_{T}} \right\},\$$

where \mathcal{K}_{σ_T} is a closed subset in $K_{R_{\alpha}}$ such that $\widetilde{\mathcal{K}_{\sigma_T}} = K_{R_{\alpha}}$. Moreover, $\mathcal{K}_n \subseteq \mathcal{K}_{\sigma_T}$ for all n. But again \mathcal{K}_{σ_T} may be a proper subset of $K_{R_{\alpha}}$ as shows the example in [2] by R. Berntzen and A. Soltysiak. Namely, there are commuting Banach space operators $a, b \in \mathcal{B}(X)$ such that $\sigma_{G(\mathcal{B}(X))}(a, b)$ is not contained in $\sigma_T(a, b)$. If Ais the closed unital associative subalgebra in $\mathcal{B}(X)$ generated by a and b, and α is the identical representation $A \to \mathcal{B}(X)$, then

$$\sigma_{G(\mathcal{B}(X))}(a,b) \subseteq \sigma_{A \cap G(\mathcal{B}(X))}(a,b).$$

Therefore $\sigma_{A\cap G(\mathcal{B}(X))}(a,b)$ is not contained in $\sigma_T(a,b)$. Thus \mathcal{K}_{σ_T} is a proper closed subset in $K_{R_{\alpha}}$ such that $\widetilde{\mathcal{K}_{\sigma_T}} = K_{R_{\alpha}}$.

We end the paper by proposing an example of a noncommutative Banach algebra A with its nilpotent attendant Lie algebra A_{fie} . That will demonstrate a gap between commutative and noncommutative cases. For the sake of generality, we consider the case of an Arens-Michael (locally multiplicatively associative) algebra

reducing it to a Banach algebra. Fix a Heisenberg algebra \mathfrak{g} with its generators e_1, e_2, e_3 (see Section 2). Thus $[e_1, e_2] = e_3$ and $[e_i, e_3] = 0$ for all *i*. Let *A* be an Arens-Michael algebra contained the Heisenberg algebra \mathfrak{g} as a Lie subalgebra (in A_{lie}) and the associative subalgebra in *A* generated by \mathfrak{g} is dense in it. If $\mathcal{U}(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g} , then the canonical embedding $\iota : \mathfrak{g} \to A$ is extended up to a canonical algebra homomorphism $\tilde{\iota} : \mathcal{U}(\mathfrak{g}) \to A$ with the dense range.

Proposition 6.6. If ker $(\tilde{\iota}) \neq \{0\}$, then e_3 is a nilpotent element in A. In particular, A_{iie} is a nilpotent Lie algebra.

Proof. Let $C = \operatorname{im}(\tilde{\iota})$. By assumption, C is a dense subalgebra in A. One can easily verify that the k-th term $C_{\mathfrak{lie}}^{(k)}$ of the lower central series of the Lie subalgebra $C_{\mathfrak{lie}}$ is contained in Ce_3^k , $k \in \mathbb{N}$. Moreover, $A_{\mathfrak{lie}}^{(k)}$ is included into the closure $\overline{C_{\mathfrak{lie}}^{(k)}}$. To establish that $A_{\mathfrak{lie}}$ is nilpotent, it suffices to prove that e_3 is nilpotent in A.

Let $\{\|\cdot\|_{\nu} : \nu \in \Lambda\}$ be a family of multiplicative seminorms on A defining its locally convex topology and let $I_{\nu} = \{a \in A : \|a\|_{\nu} = 0\}$. Then I_{ν} is a twosided ideal in A and A/I_{ν} is a normed algebra with respect to the quotient norm induced by $\|\cdot\|_{\nu}$. Let A_{ν} be its norm-completion. The family of Banach algebras $\{A_{\nu}\}$ generates an inverse system and its inverse limit is topologically isomorphic to A [12, 5.2.17]. It is obvious that the associative subalgebra in A_{ν} generated by the nilpotent Lie subalgebra $\pi_{\nu}(\mathfrak{g})$ is dense in A_{ν} , where $\pi_{\nu} : A \to A_{\nu}$ is the canonical map, $\nu \in \Lambda$. By Turovskii's lemma, A_{ν} is commutative modulo its Jacobson radical, thereupon $\pi_{\nu}(e_3)$ is a quasinilpotent element in A_{ν} . On that account we conclude that $\sigma(e_3) = \{0\}$, for

$$\sigma\left(e_{3}\right)=\bigcup_{\nu\in\Lambda}\sigma\left(\pi_{\nu}\left(e_{3}\right)\right)$$

(see [12, 5.2.12]). To prove that e_3 is nilpotent, one suffices to demonstrate that $q(e_3) = 0$ for a certain nonzero polynomial q(z) of one complex variable z [11, Problem 97].

By assumption $\tilde{\iota}(p) = 0$ for some nonzero $p \in \mathcal{U}(\mathfrak{g})$. By Poincare-Birkhoff-Witt theorem,

$$p = \sum_{m=0}^{n} p_m (e_1, e_2) e_3^m$$

for some polynomials $p_m = p_m(z, w)$ in two complex variables. Assume that $i = \max \{ \deg(p_m) \}$, where $\deg(p_m)$ is the degree (maximum of the homogeneous degrees) of p_m . Put $i = \deg(p_{m_1}) = \cdots = \deg(p_{m_s})$ for some $m_j, 0 \le m_1 < \cdots < m_s \le n$. Consider the polynomial p_{m_1} . Then

$$p_{m_1}(e_1, e_2) = \lambda_{km_1} e_1^k e_2^{i-k} + q_{m_1}(e_1, e_2)$$

such that $\lambda_{km_1} \neq 0$ and $q_{m_1}(z, w)$ is a polynomial without the monomial $z^k w^{i-k}$, for some k. Let λ_{km_j} be the coefficient of $z^k w^{i-k}$ in $p_{m_j}(z, w)$, $2 \leq j \leq s$. So

Regularities

 $p_{m_1}(e_1, e_2) = \lambda_{km_j} e_1^k e_2^{i-k} + q_{m_j}(e_1, e_2)$, where $q_{m_j}(z, w)$ is a polynomial without $z^k w^{i-k}$. Consider a linear operator

$$T_{i,k} = (-1)^k (\operatorname{ad} e_2)^k (\operatorname{ad} e_1)^{i-k} : \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{g}).$$

Note that

$$T_{i,k}\left(e_1^s e_2^t e_3^r\right) = T_{i,k}\left(e_1^s e_2^t\right)e_3^r = \frac{s!t!}{(s-k)!\left(t-i+k\right)!}e_1^{s-k}e_2^{t-i+k}e_3^{i+r}$$

(here we have assumed that $e_p^{-q} = 0$, $p = 1, 2, q \in \mathbb{N}$), thereby $T_{i,k}(e_1^s e_2^t e_3^r) \neq 0$ only when $s \geq k$ and $t \geq i - k$. It follows that

$$T_{i,k}\left(p_{m_{j}}\left(e_{1},e_{2}\right)\right) = T_{i,k}\left(\lambda_{km_{j}}e_{1}^{k}e_{2}^{i-k}\right) + T_{i,k}\left(q_{m_{j}}\left(e_{1},e_{2}\right)\right) = \lambda_{km_{j}}T_{i,k}\left(e_{1}^{k}e_{2}^{i-k}\right)$$
$$= k!\left(i-k\right)!\lambda_{km_{j}}e_{3}^{i},$$

for all $j, 1 \leq j \leq s$. Thus

$$T_{i,k}(p) = \sum_{j=1}^{s} T_{i,k}\left(p_{m_j}(e_1, e_2)\right) e_3^{m_j} = k! (i-k)! \sum_{j=1}^{s} \lambda_{km_j} e_3^{i+m_j}$$

We set $q = k! (i - k)! \sum_{j=1}^{s} \lambda_{km_j} e_3^{i+m_j}$, which is a nonzero polynomial in $\mathcal{U}(\mathfrak{g})$. Prove that $q(e_3) = 0$ in A. Being a two-sided ideal in $\mathcal{U}(\mathfrak{g})$, the subspace ker $(\tilde{\iota}) \subseteq \mathcal{U}(\mathfrak{g})$ is invariant with respect to the operator $T_{i,k}$. With $p \in \text{ker}(\tilde{\iota})$ in mind, infer that $q = T_{i,k}(p) \in \text{ker}(\tilde{\iota})$. Therefore $q(e_3) = \tilde{\iota}(q) = 0$. Thus e_3 is a nilpotent element in A. It follows that A_{fir} is a nilpotent Lie algebra.

The assertion stated in Proposition 6.6 can be proved for arbitrary nilpotent Lie algebra. If A is a closed associative envelope of a finite-dimensional nilpotent Lie algebra \mathfrak{g} and all elements from $[\mathfrak{g},\mathfrak{g}]$ are nilpotent in A, then $A_{\mathfrak{lie}}$ is nilpotent. We omit the details.

Acknowledgment

I wish to thank A. Soltysiak and A. Wawrzynczyk for sending me papers [2], [15], [10] and [23]. The author also thanks the referee for the proposed comments.

References

- [1] D. Beltita, M. Sabac, Lie algebra of bounded operators, Birkhäuser, Basel, 2001.
- [2] R. Berntzen, A. Soltysiak, The Harte spectrum is not contained in the Taylor spectrum, Comment. Math. Prace Mat. 38 (1998) 29-35.
- [3] E. Boasso, Dual properties and joint spectra for solvable Lie algebras of operators, J. Operator Theory 33 (1995) 105-116.
- [4] N. Bourbaki, Spectral Theory, MIR (Moscow) 1972.
- [5] N. Bourbaki, Algebra, modules, rings, forms, Nauka (Moscow) 1966.
- [6] A. A. Dosiev, Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations, Algebra Colloquium (to appear).

- [7] A. A. Dosiev, Local left invertibility of operator tuples and noncommutative localizations, J. K-theory (to appear).
- [8] A. A. Dosiev, Cartan-Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal. 230 (2) (2006) 446-493.
- [9] A. A. Dosiev, Cohomology of Sheaves of Fréchet algebras and spectral theory, Funct. Anal. and its Appl. 39 (3) (2005) 225-228.
- [10] A. V. Gonzalez, A. Wawrsynczyk, The projection property of a family of ideals in subalgebras of Banach algebras, Bol. Soc. Mat. Mexicana (3) 8 (2002) (2), 155-160.
- [11] R. P. Halmos, A Hilbert space problem book, Springer-Verlag, New York (1982).
- [12] A. Ya. Helemskii, Banach and polinormed algebras: general theory, representations, homology, Moscow, Nauka, 1989.
- [13] V. Müller, Spectral Theory of Linear Operators and Spectral systems in Banach algebras, Operator Theory: Adv. Appl. 139, Birkhäuser, Basel, 2003.
- [14] W. Rudin, Functional Analysis, Inter. Ser. Pure Appl. Math. 1991.
- [15] J. Saul, C. Orozco, A. Wawrzynczyk, Regularities and subspectra for commutative Banach algebras, Inter. J. Math. and Math. Sciences. 15 (2005) 2399-2407.
- [16] Z. Slodkowski, An infinite family of joint spectra, Stud. Math. LXI (1977), 239-255.
- [17] Z. Slodkowski, W. Zelazko, On joint spectra of commuting families of operators, Stud. Math. 50 (1974) 127-148.
- [18] A. Soltysiak, The strong spectral extension property does not imply the multiplicative Hahn-Banach property, Stud. Math. 153 (3) (2002) 297-301.
- [19] J. L. Taylor, A general framework for a multi-operator functional calculus, Adv. Math. 9 (1972), 183-252.
- [20] Yu. V. Turovskii, On spectral properties of elements of normed algebras and invariant subspaces, Funktsional. Anal. i Prilozhen. 18 (2) (1984) 77-78.
- [21] W. Zelazko, Banach algebras, Elsevier, Amsterdam; PWN, Warsaw, 1973.
- [22] W. Zelazko, An axiomatic approach to joint spectra, Studia Math. 64 (3) (1979) 249-261.
- [23] A. Wawrzynczyk, On subspectra generated in subalgebras, Bull. London Math. Soc. 35 (2003) 367-372.

Anar Dosiev Middle East Technical University NCC Güzelyurt, KKTC Mersin 10 Turkey e-mail: dosiev@yahoo.com

Submitted: September 28, 2006 Revised: February 12, 2008