We compute the Jacobian as follows:

$$\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)} = \begin{vmatrix} \sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\ \sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\ \cos \phi & 0 & -\rho \sin \phi \end{vmatrix}$$

$$= \cos \phi \begin{vmatrix} -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\ \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \end{vmatrix} - \rho \sin \phi \begin{vmatrix} \sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \sin \phi \cos \theta \end{vmatrix}$$

$$= \cos \phi \left(-\rho^2 \sin \phi \cos \phi \sin^2 \theta - \rho^2 \sin \phi \cos \phi \cos^2 \theta \right)$$

$$-\rho \sin \phi \left(\rho \sin^2 \phi \cos^2 \theta + \rho \sin^2 \phi \sin^2 \theta \right)$$

$$= -\rho^2 \sin \phi \cos^2 \phi - \rho^2 \sin \phi \sin^2 \phi = -\rho^2 \sin \phi$$
Since $\cos \phi \cos^2 \phi - \rho^2 \sin \phi \sin^2 \phi = -\rho^2 \sin \phi$

Since $0 \le \phi \le \pi$, we have $\sin \phi \ge 0$. Therefore

$$\left| \frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)} \right| = \left| -\rho^2 \sin \phi \right| = \rho^2 \sin \phi$$

and Formula 13 gives

$$\iiint\limits_R f(x, y, z) \, dV = \iiint\limits_S f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$

which is equivalent to Formula 15.9.3.

15.10 Exercises

Οŋ

1-6 Find the Jacobian of the transformation.

1.
$$x = 5u - v$$
, $y = u + 3v$

2.
$$x = uv$$
, $y = u/v$

3.
$$x = e^{-r}\sin\theta$$
, $y = e^{r}\cos\theta$

4.
$$x = e^{s+t}$$
, $y = e^{s-t}$

5.
$$x = u/v$$
, $y = v/w$, $z = w/u$

6.
$$x = v + w^2$$
, $y = w + u^2$, $z = u + v^2$

7-10 Find the image of the set S under the given transformation.

7.
$$S = \{(u, v) \mid 0 \le u \le 3, \ 0 \le v \le 2\};$$

 $x = 2u + 3v, \ y = u - v$

8. S is the square bounded by the lines
$$u = 0$$
, $u = 1$, $v = 0$, $v = 1$; $x = v$, $y = u(1 + v^2)$

9. S is the triangular region with vertices
$$(0, 0)$$
, $(1, 1)$, $(0, 1)$; $x = u^2$, $y = v$

10. S is the disk given by
$$u^2 + v^2 \le 1$$
; $x = au$, $y = bv$

11–14 A region R in the xy-plane is given. Find equations for a transformation T that maps a rectangular region S in the uv-plane onto R, where the sides of S are parallel to the u- and v- axes.

11. R is bounded by
$$y = 2x - 1$$
, $y = 2x + 1$, $y = 1 - x$, $y = 3 - x$

12. R is the parallelogram with vertices (0, 0), (4, 3), (2, 4), (-2, 1)

13. R lies between the circles
$$x^2 + y^2 = 1$$
 and $x^2 + y^2 = 2$ in the first quadrant

14. R is bounded by the hyperbolas
$$y = 1/x$$
, $y = 4/x$ and the lines $y = x$, $y = 4x$ in the first quadrant

15-20 Use the given transformation to evaluate the integral.

15.
$$\iint_R (x-3y) dA$$
, where R is the triangular region with vertices $(0,0)$, $(2,1)$, and $(1,2)$; $x=2u+v$, $y=u+2v$

16.
$$\iint_R (4x + 8y) dA$$
, where *R* is the parallelogram with vertices $(-1, 3), (1, -3), (3, -1), \text{ and } (1, 5);$ $x = \frac{1}{4}(u + v), y = \frac{1}{4}(v - 3u)$

17.
$$\iint_R x^2 dA$$
, where R is the region bounded by the ellipse $9x^2 + 4y^2 = 36$; $x = 2u$, $y = 3v$

- **18.** $\iint_R (x^2 xy + y^2) dA$, where *R* is the region bounded by the ellipse $x^2 xy + y^2 = 2$; $x = \sqrt{2} u \sqrt{2/3} v$, $y = \sqrt{2} u + \sqrt{2/3} v$
- **19.** $\iint_R xy \, dA$, where R is the region in the first quadrant bounded by the lines y = x and y = 3x and the hyperbolas xy = 1, xy = 3; x = u/v, y = v
- **20.** $\iint_R y^2 dA$, where *R* is the region bounded by the curves xy = 1, xy = 2, $xy^2 = 1$, $xy^2 = 2$; u = xy, $v = xy^2$. Illustrate by using a graphing calculator or computer to draw *R*.
 - **21.** (a) Evaluate $\iiint_E dV$, where E is the solid enclosed by the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. Use the transformation x = au, y = bv, z = cw.
 - (b) The earth is not a perfect sphere; rotation has resulted in flattening at the poles. So the shape can be approximated by an ellipsoid with $a=b=6378~\mathrm{km}$ and $c=6356~\mathrm{km}$. Use part (a) to estimate the volume of the earth.
 - (c) If the solid of part (a) has constant density k, find its moment of inertia about the z-axis.
 - **22.** An important problem in thermodynamics is to find the work done by an ideal Carnot engine. A cycle consists of alternating expansion and compression of gas in a piston. The work done by the engine is equal to the area of the region R enclosed by two isothermal curves xy = a, xy = b and two adiabatic

curves $xy^{1.4} = c$, $xy^{1.4} = d$, where 0 < a < b and 0 < c < d. Compute the work done by determining the area of R.

Co

True-Determ If it is f

2. ∫

5. If /

- **23–27** Evaluate the integral by making an appropriate change of variables.
- 23. $\iint_{R} \frac{x 2y}{3x y} dA$, where R is the parallelogram enclosed by the lines x 2y = 0, x 2y = 4, 3x y = 1, and 3x y = 8
- **24.** $\iint_R (x+y)e^{x^2-y^2} dA$, where R is the rectangle enclosed by the lines x-y=0, x-y=2, x+y=0, and x+y=3
- **25.** $\iint_{R} \cos\left(\frac{y-x}{y+x}\right) dA$, where *R* is the trapezoidal region with vertices (1, 0), (2, 0), (0, 2), and (0, 1)
- **26.** $\iint_R \sin(9x^2 + 4y^2) dA$, where *R* is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$
- 27. $\iint_R e^{x+y} dA$, where R is given by the inequality $|x| + |y| \le 1$
- **28.** Let f be continuous on [0, 1] and let R be the triangular region with vertices (0, 0), (1, 0), and (0, 1). Show that

$$\iint\limits_R f(x+y) \, dA = \int_0^1 u f(u) \, du$$