METU Northern Cyprus Campus

	Calculus fo	r Function	s of Sever	al Variables	
	Midterm II				
Acad.Yea Semester	: Math 120 r: 2010-2011 : Spring : 4.30.2011	Last Na Name Departi Signatu	: ment:	Student No Section:	
Time	: 10:00 : 120 minutes		6 QUESTIONS ON 6 PAGES TOTAL 100 POINTS		
2	3 4 5	6			

- 1. (5 pts each) Consider 3 points $P_1(1,1,-2)$, $P_2(2,3,-1)$, $P_3(3,6,2)$ in the 3-dimensional cartesian space.
- (a) Find the linear equation of the plane passing through the points P_1, P_2 and P_3 .

(b) Find the area of the triangle with vertices P_1, P_2 and P_3 .

(c) Find the volume of the tetrahedron with vertices O, P_1 , P_2 and P_3 where O is the origin. Hint: The volume of this tetrahedron is equal to 1/6 times the volume of the parallelepiped determined by the vectors $\overrightarrow{OP_1}$, $\overrightarrow{OP_2}$ and $\overrightarrow{OP_3}$.

2. (5+5 pts) Let $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$.

(a) Find the scalar parametric equations of the tangent line to the curve of r(t) when t = 1.

(b) Find the curvature of the curve of $\mathbf{r}(t)$ when t=1.

3. (5 pts eachs) Find the limits below or explain why they do not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x\sin^2 y}{x^2 + y^4}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y^2)}{x^2+y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{xy-1}{x^2+y^2-1}$$

4. (7+8 pts) Let $f(x,y) = x^2 + y^3$ where x = s + 2t and $y = s^2t$. USE CHAIN RULE to find the partial derivatives below. Substitution is to be made only in the last step.

(a) Find $\frac{\partial f}{\partial s}$ in terms of s and t.

(b) Find $\frac{\partial^2 f}{\partial s^2}$ in terms of s and t.

5. (104-10 pts) Let
$$f(x,y) = \sin(\frac{\pi x}{2})e^y$$

(a) Find the equation of the tangent plane to the graph of f(x,y) when $x = \mathbb{F}^d$ and y = 0.

(b) Use part (a) to approximate the value of $\sin(\frac{0.9\pi}{2})e^{0.1}$.

- 6. (5+7+8 pts) Let $z = f(x, y) = x^2 + 4y^2$. (a) Sketch the level curve at z = 8.

(b) Find the equation of the normal line at (2,1) to the level curve in part (a). [The normal line is the line which is orthogonal to the curve at the given point.]

(c) Find the direction **u** at which $D_{u}f(2,1)$ is maximum.