METU - NCC

		Precalculu Midterm				
	: Math 100	Last Name:				
Acad.Year	c: 2011-2012	Name :	9	Student No.:		
Semester	: Fall	Department	-	Section:		
Date	: 12.3.2011	Signature:				
Time	: 13:40	12 QUESTIONS ON 4 PAGES				
Duration	: 120 minutes	TOTAL 100 POINTS				
1 (8) 2 (7)		(7) 7 (7) 8 (7)	9 (7) 10 (14) 11	(7) 12 (7)		

1. (8 pts) Find the set of solutions to the inequality |2x-1| > x+5.

2. (7 pts) The sum of the ages of three brothers is equal to 29. Also, the sum of the ages of the younger two brothers is 5 more than the age of the oldest. Find the age of the oldest brother.

$$a+b+c=29$$
 $akb
 $a+b+k=c+5$
 $2c+5=29$
 $c=12$$

12

3. (8 pts) Find the set of solutions to the inequality $x^2 + 8x + 11 \angle 2x + 3$.

$$x^{2}$$
 $+ 6x + 8 < 0$
 $(x + 2)(x + 4) < 0$
 x^{2} $+ 6x + 8$ $+ 6$ $+ 6$ $+ 6$ $+ 6$

x ∈ (-4,-2).

4. (7 pts) Find real numbers a and b so that $a + bi = \frac{3-i}{2+i}$.

$$\frac{3-i}{2+i} \cdot \frac{(2-i)}{(2-i)} = \frac{6-5i+i^2}{4-i^2} = \frac{5-5i}{5}$$
 $a=1$ $b=-1$

- 5. (2x7 pts) Let $f(x) = x^2 + 3x + 2$.
 - a) Complete f(x) to a square. [Find h, k such that $f(x) = (x+h)^2 + k$]

$$f(x) = x^2 + 3x + \frac{9}{4} + 2 - \frac{9}{4}$$

$$f(x) = \left(\times + \frac{3}{2} \right)^2 - \frac{1}{4}$$

b) Find the vertex of f(x).

$$vertex = \left(-\frac{3}{2}, -\frac{1}{4}\right)$$

6. (7 pts) Find the coordinates of a point P = (x, y) so that the distance from (-7, 9) to P is one third of the distance from (5, -7) to P.

$$P = (-4, 5)$$

$$\frac{5 - (-7)}{9} = \frac{12}{9} = 3$$

$$\frac{1 - 7 - 91}{9} = 4$$

7. (7 pts) Find an equation of the line passing through the points (-3, 4) and (1, -8). (Write your answer in standard form: y = mx + b)

$$\frac{X+3}{9-9} = \frac{1+3}{-8-4} = -\frac{1}{3}$$

$$y = -3x - 5$$

8. (7 pts) The graph of f(x) is given below. Graph g(x) = f(x+2) - 1 in the blank grid provided.

9. (7 pts) Describe a function g(x) in terms of f(x) if the graph of g is obtained by shifting the graph of f to the left by 5 units and down by 4 units.

$$g(x) = f(x+5) - 4$$

10. (2x7 pts) Complete the table below by filling in correct values of $(f \circ g)(x)$ and $(f \circ g^{-1})(x)$:

			,	(* 5) (
x	1	2	3	4
f(x)	4	1	2	3
g(x)	2	4	1	3
$(f \circ g)(x)$	gg voice and	3	4	2
$(f\circ g^{-1})(x)$	2,	4	3	BECOMMON CO.

11. (7 pts) Divide $P(x) = x^5 - 3x^3 + 2x + 4$ by $Q(x) = x^2 - 4$.

$$\frac{P(x)}{Q(x)} = \times^3 + \times + \frac{\zeta_{X+} \zeta_{X+}}{\chi^2 + \zeta_{X+}}$$

12. (7 pts) Use the remainder theorem to find f(7) where $f(x) = x^5 - 6x^4 - 13x^3 + 21x + 4$.

$$f(7) = -1907$$

$$x^{5} - 6x^{4} - 13x^{3} + 21x + 4$$
 $x^{5} - 7x^{4}$
 $x^{6} - 13x^{3} + 21x + 4$
 $x^{6} - 13x^{3} + 21x + 4$
 $x^{6} - 7x^{3}$
 $x^{6} - 6x^{3} + 21x + 4$
 $x^{6} - 6x^{3} + 42x^{2}$
 $x^{6} - 42x^{2} + 21x + 4$
 $x^{6} - 6x^{3} + 42x^{2}$
 $x^{6} - 42x^{2} + 294x$
 $x^{6} - 273x + 4$
 $x^{6} - 273x + 4$
 $x^{6} - 1907$